mirror of
https://github.com/home-assistant/core.git
synced 2025-12-24 12:59:34 +00:00
Vendorize vincenty requirement (#2176)
This commit is contained in:
committed by
Paulus Schoutsen
parent
8494ac7cef
commit
4b0df51b40
@@ -4,12 +4,24 @@ Module with location helpers.
|
||||
detect_location_info and elevation are mocked by default during tests.
|
||||
"""
|
||||
import collections
|
||||
|
||||
import math
|
||||
import requests
|
||||
|
||||
from vincenty import vincenty
|
||||
|
||||
ELEVATION_URL = 'http://maps.googleapis.com/maps/api/elevation/json'
|
||||
DATA_SOURCE = ['https://freegeoip.io/json/', 'http://ip-api.com/json']
|
||||
|
||||
# Constants from https://github.com/maurycyp/vincenty
|
||||
# Earth ellipsoid according to WGS 84
|
||||
# Axis a of the ellipsoid (Radius of the earth in meters)
|
||||
AXIS_A = 6378137
|
||||
# Flattening f = (a-b) / a
|
||||
FLATTENING = 1 / 298.257223563
|
||||
# Axis b of the ellipsoid in meters.
|
||||
AXIS_B = 6356752.314245
|
||||
|
||||
MILES_PER_KILOMETER = 0.621371
|
||||
MAX_ITERATIONS = 200
|
||||
CONVERGENCE_THRESHOLD = 1e-12
|
||||
|
||||
LocationInfo = collections.namedtuple(
|
||||
"LocationInfo",
|
||||
@@ -17,8 +29,6 @@ LocationInfo = collections.namedtuple(
|
||||
'city', 'zip_code', 'time_zone', 'latitude', 'longitude',
|
||||
'use_fahrenheit'])
|
||||
|
||||
DATA_SOURCE = ['https://freegeoip.io/json/', 'http://ip-api.com/json']
|
||||
|
||||
|
||||
def detect_location_info():
|
||||
"""Detect location information."""
|
||||
@@ -76,3 +86,74 @@ def elevation(latitude, longitude):
|
||||
return int(float(req.json()['results'][0]['elevation']))
|
||||
except (ValueError, KeyError):
|
||||
return 0
|
||||
|
||||
|
||||
# Author: https://github.com/maurycyp
|
||||
# Source: https://github.com/maurycyp/vincenty
|
||||
# License: https://github.com/maurycyp/vincenty/blob/master/LICENSE
|
||||
# pylint: disable=too-many-locals, invalid-name, unused-variable
|
||||
def vincenty(point1, point2, miles=False):
|
||||
"""
|
||||
Vincenty formula (inverse method) to calculate the distance.
|
||||
|
||||
Result in kilometers or miles between two points on the surface of a
|
||||
spheroid.
|
||||
"""
|
||||
# short-circuit coincident points
|
||||
if point1[0] == point2[0] and point1[1] == point2[1]:
|
||||
return 0.0
|
||||
|
||||
U1 = math.atan((1 - FLATTENING) * math.tan(math.radians(point1[0])))
|
||||
U2 = math.atan((1 - FLATTENING) * math.tan(math.radians(point2[0])))
|
||||
L = math.radians(point2[1] - point1[1])
|
||||
Lambda = L
|
||||
|
||||
sinU1 = math.sin(U1)
|
||||
cosU1 = math.cos(U1)
|
||||
sinU2 = math.sin(U2)
|
||||
cosU2 = math.cos(U2)
|
||||
|
||||
for iteration in range(MAX_ITERATIONS):
|
||||
sinLambda = math.sin(Lambda)
|
||||
cosLambda = math.cos(Lambda)
|
||||
sinSigma = math.sqrt((cosU2 * sinLambda) ** 2 +
|
||||
(cosU1 * sinU2 - sinU1 * cosU2 * cosLambda) ** 2)
|
||||
if sinSigma == 0:
|
||||
return 0.0 # coincident points
|
||||
cosSigma = sinU1 * sinU2 + cosU1 * cosU2 * cosLambda
|
||||
sigma = math.atan2(sinSigma, cosSigma)
|
||||
sinAlpha = cosU1 * cosU2 * sinLambda / sinSigma
|
||||
cosSqAlpha = 1 - sinAlpha ** 2
|
||||
try:
|
||||
cos2SigmaM = cosSigma - 2 * sinU1 * sinU2 / cosSqAlpha
|
||||
except ZeroDivisionError:
|
||||
cos2SigmaM = 0
|
||||
C = FLATTENING / 16 * cosSqAlpha * (4 + FLATTENING * (4 - 3 *
|
||||
cosSqAlpha))
|
||||
LambdaPrev = Lambda
|
||||
Lambda = L + (1 - C) * FLATTENING * sinAlpha * (sigma + C * sinSigma *
|
||||
(cos2SigmaM + C *
|
||||
cosSigma *
|
||||
(-1 + 2 *
|
||||
cos2SigmaM ** 2)))
|
||||
if abs(Lambda - LambdaPrev) < CONVERGENCE_THRESHOLD:
|
||||
break # successful convergence
|
||||
else:
|
||||
return None # failure to converge
|
||||
|
||||
uSq = cosSqAlpha * (AXIS_A ** 2 - AXIS_B ** 2) / (AXIS_B ** 2)
|
||||
A = 1 + uSq / 16384 * (4096 + uSq * (-768 + uSq * (320 - 175 * uSq)))
|
||||
B = uSq / 1024 * (256 + uSq * (-128 + uSq * (74 - 47 * uSq)))
|
||||
deltaSigma = B * sinSigma * (cos2SigmaM +
|
||||
B / 4 * (cosSigma * (-1 + 2 *
|
||||
cos2SigmaM ** 2) -
|
||||
B / 6 * cos2SigmaM *
|
||||
(-3 + 4 * sinSigma ** 2) *
|
||||
(-3 + 4 * cos2SigmaM ** 2)))
|
||||
s = AXIS_B * A * (sigma - deltaSigma)
|
||||
|
||||
s /= 1000 # Converion of meters to kilometers
|
||||
if miles:
|
||||
s *= MILES_PER_KILOMETER # kilometers to miles
|
||||
|
||||
return round(s, 6)
|
||||
|
||||
Reference in New Issue
Block a user