This patch also changes the method of calling querystr() such that
it is only called when logging is enabled, to eliminate any
possible performance problems from searching the larger table.
This extends query filtering support beyond what is currently possible
with the `--ipset` configuration option, by adding support for:
1) Specifying allowlists on a per-client basis, based on their
associated Linux connection track mark.
2) Dynamic configuration of allowlists via Ubus.
3) Reporting when a DNS query resolves or is rejected via Ubus.
4) DNS name patterns containing wildcards.
Disallowed queries are not forwarded; they are rejected
with a REFUSED error code.
Signed-off-by: Etan Kissling <etan_kissling@apple.com>
(addressed reviewer feedback)
Signed-off-by: Etan Kissling <etan.kissling@gmail.com>
In the specific case of configuring an A record for a domain
address=/example.com/1.2.3.4
queries for *example.com for any other type will now return
NOERR, and not the previous erroneous NXDOMAIN. The same thing
applies for
address=/example.com/::1:2:3:4
address=/example.com/#
If we retry a DNSSEC query because our client retries on us, and
we have an answer but are waiting on a DNSSEC query to validate it,
log the name of the DNSSEC query, not the client's query.
The sharing point for DNSSEC RR data used to be when it entered the
cache, having been validated. After that queries requiring the KEY or
DS records would share the cached values. There is a common case in
dual-stack hosts that queries for A and AAAA records for the same
domain are made simultaneously. If required keys were not in the
cache, this would result in two requests being sent upstream for the
same key data (and all the subsequent chain-of-trust queries.) Now we
combine these requests and elide the duplicates, resulting in fewer
queries upstream and better performance. To keep a better handle on
what's going on, the "extra" logging mode has been modified to
associate queries and answers for DNSSEC queries in the same way as
ordinary queries. The requesting address and port have been removed
from DNSSEC logging lines, since this is no longer strictly defined.
This used to have a global limit, but that has a problem when using
different servers for different upstream domains. Queries which are
routed by domain to an upstream server which is not responding will
build up and trigger the limit, which breaks DNS service for all other
domains which could be handled by other servers. The change is to make
the limit per server-group, where a server group is the set of servers
configured for a particular domain. In the common case, where only
default servers are declared, there is no effective change.
This should be largely transparent, but it drastically
improves performance and reduces memory foot-print when
configuring large numbers domains of the form
local=/adserver.com/
or
local=/adserver.com/#
Lookup times now grow as log-to-base-2 of the number of domains,
rather than greater than linearly, as before.
The change makes multiple addresses associated with a domain work
address=/example.com/1.2.3.4
address=/example.com/5.6.7.8
It also handles multiple upstream servers for a domain better; using
the same try/retry alogrithms as non domain-specific servers. This
also applies to DNSSEC-generated queries.
Finally, some of the oldest and gnarliest code in dnsmasq has had
a significant clean-up. It's far from perfect, but it _is_ better.
If two queries arrive a second or so apart, they cannot be a try and
a retry from the same client (retries are at least three seconds apart.)
It's therefore safe not to forward the second query, but answer them
both when the reply arrives for the first.
This changes the behaviour introduced in
141a26f979
We re-introduce the distinction between a query
which is retried from the same source, and one which is
repeated from different sources.
In the later case, we still forward the query, to avoid
problems when the reply to the first query is lost
(see f8cf456920) but we suppress the behaviour
that's used on a retry, when the query is sent to
all available servers in parallel.
Retry -> all servers.
Repeat -> next server.
This avoids a significant increase in upstream traffic on
busy instances which see lots of queries for common names.
It does mean the clients which repeat queries from new source ports,
rather than retrying them from the same source port, will see
different behaviour, but it in fact restores the pre-2.83 behaviour,
so it's not expected to be a practical problem.
One change to server_test_type forgot to set SERV_DO_DNSSEC. One new
place still can be reused.
Fixes commit e10a9239e1, thanks to
Xingcong Li for spotting it.
One part in dnssec retry path did not dump sent retry into dump file.
Make sure it is dumped all times it is sent by common function shared on
multiple places. Reduce a bit also server sending.
CVE-2021-3448 applies.
It's possible to specify the source address or interface to be
used when contacting upstream nameservers: server=8.8.8.8@1.2.3.4
or server=8.8.8.8@1.2.3.4#66 or server=8.8.8.8@eth0, and all of
these have, until now, used a single socket, bound to a fixed
port. This was originally done to allow an error (non-existent
interface, or non-local address) to be detected at start-up. This
means that any upstream servers specified in such a way don't use
random source ports, and are more susceptible to cache-poisoning
attacks.
We now use random ports where possible, even when the
source is specified, so server=8.8.8.8@1.2.3.4 or
server=8.8.8.8@eth0 will use random source
ports. server=8.8.8.8@1.2.3.4#66 or any use of --query-port will
use the explicitly configured port, and should only be done with
understanding of the security implications.
Note that this change changes non-existing interface, or non-local
source address errors from fatal to run-time. The error will be
logged and communiction with the server not possible.
Remove distinction between retry with same QID/SP and
retry for same query with different QID/SP. If the
QID/SP are the same as an existing one, simply retry,
if a new QID/SP is seen, add to the list to be replied to.
The new logic in 2.83/2.84 which merges distinct requests for the
same domain causes problems with clients which do retries as distinct
requests (differing IDs and/or source ports.) The retries just get
piggy-backed on the first, failed, request.
The logic is now changed so that distinct requests for repeated
queries still get merged into a single ID/source port, but they now
always trigger a re-try upstream.
Thanks to Nicholas Mu for his analysis.
If identical queries from IPv4 and IPv6 sources are combined by the
new code added in 15b60ddf93 then replies
can end up being sent via the wrong family of socket. The ->fd
should be per query, not per-question.
In bind-interfaces mode, this could also result in replies being sent
via the wrong socket even when IPv4/IPV6 issues are not in play.
If we add the EDNS client subnet option, or the client's
MAC address, then the reply we get back may very depending on
that. Since the cache is ignorant of such things, it's not safe to
cache such replies. This patch determines when a dangerous EDNS
option is being added and disables caching.
Note that for much the same reason, we can't combine multiple
queries for the same question when dangerous EDNS options are
being added, and the code now handles that in the same way. This
query combining is required for security against cache poisoning,
so disabling the cache has a security function as well as a
correctness one.
Previously, such queries would all be forwarded
independently. This is, in theory, inefficent but in practise
not a problem, _except_ that is means that an answer for any
of the forwarded queries will be accepted and cached.
An attacker can send a query multiple times, and for each repeat,
another {port, ID} becomes capable of accepting the answer he is
sending in the blind, to random IDs and ports. The chance of a
succesful attack is therefore multiplied by the number of repeats
of the query. The new behaviour detects repeated queries and
merely stores the clients sending repeats so that when the
first query completes, the answer can be sent to all the
clients who asked. Refer: CERT VU#434904.
Use the SHA-256 hash function to verify that DNS answers
received are for the questions originally asked. This replaces
the slightly insecure SHA-1 (when compiled with DNSSEC) or
the very insecure CRC32 (otherwise). Refer: CERT VU#434904.