mirror of
https://github.com/pi-hole/dnsmasq.git
synced 2025-12-19 18:28:25 +00:00
2310 lines
59 KiB
C
2310 lines
59 KiB
C
/* dnssec.c is Copyright (c) 2012 Giovanni Bajo <rasky@develer.com>
|
|
and Copyright (c) 2012-2014 Simon Kelley
|
|
|
|
This program is free software; you can redistribute it and/or modify
|
|
it under the terms of the GNU General Public License as published by
|
|
the Free Software Foundation; version 2 dated June, 1991, or
|
|
(at your option) version 3 dated 29 June, 2007.
|
|
|
|
This program is distributed in the hope that it will be useful,
|
|
but WITHOUT ANY WARRANTY; without even the implied warranty of
|
|
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
|
|
GNU General Public License for more details.
|
|
|
|
You should have received a copy of the GNU General Public License
|
|
along with this program. If not, see <http://www.gnu.org/licenses/>.
|
|
*/
|
|
|
|
#include "dnsmasq.h"
|
|
|
|
#ifdef HAVE_DNSSEC
|
|
|
|
#include <nettle/rsa.h>
|
|
#include <nettle/dsa.h>
|
|
#ifndef NO_NETTLE_ECC
|
|
# include <nettle/ecdsa.h>
|
|
# include <nettle/ecc-curve.h>
|
|
#endif
|
|
#include <nettle/nettle-meta.h>
|
|
#include <gmp.h>
|
|
|
|
#define SERIAL_UNDEF -100
|
|
#define SERIAL_EQ 0
|
|
#define SERIAL_LT -1
|
|
#define SERIAL_GT 1
|
|
|
|
/* http://www.iana.org/assignments/ds-rr-types/ds-rr-types.xhtml */
|
|
static char *ds_digest_name(int digest)
|
|
{
|
|
switch (digest)
|
|
{
|
|
case 1: return "sha1";
|
|
case 2: return "sha256";
|
|
case 3: return "gosthash94";
|
|
case 4: return "sha384";
|
|
default: return NULL;
|
|
}
|
|
}
|
|
|
|
/* http://www.iana.org/assignments/dns-sec-alg-numbers/dns-sec-alg-numbers.xhtml */
|
|
static char *algo_digest_name(int algo)
|
|
{
|
|
switch (algo)
|
|
{
|
|
case 1: return "md5";
|
|
case 3: return "sha1";
|
|
case 5: return "sha1";
|
|
case 6: return "sha1";
|
|
case 7: return "sha1";
|
|
case 8: return "sha256";
|
|
case 10: return "sha512";
|
|
case 12: return "gosthash94";
|
|
case 13: return "sha256";
|
|
case 14: return "sha384";
|
|
default: return NULL;
|
|
}
|
|
}
|
|
|
|
/* Find pointer to correct hash function in nettle library */
|
|
static const struct nettle_hash *hash_find(char *name)
|
|
{
|
|
int i;
|
|
|
|
if (!name)
|
|
return NULL;
|
|
|
|
for (i = 0; nettle_hashes[i]; i++)
|
|
{
|
|
if (strcmp(nettle_hashes[i]->name, name) == 0)
|
|
return nettle_hashes[i];
|
|
}
|
|
|
|
return NULL;
|
|
}
|
|
|
|
/* expand ctx and digest memory allocations if necessary and init hash function */
|
|
static int hash_init(const struct nettle_hash *hash, void **ctxp, unsigned char **digestp)
|
|
{
|
|
static void *ctx = NULL;
|
|
static unsigned char *digest = NULL;
|
|
static unsigned int ctx_sz = 0;
|
|
static unsigned int digest_sz = 0;
|
|
|
|
void *new;
|
|
|
|
if (ctx_sz < hash->context_size)
|
|
{
|
|
if (!(new = whine_malloc(hash->context_size)))
|
|
return 0;
|
|
if (ctx)
|
|
free(ctx);
|
|
ctx = new;
|
|
ctx_sz = hash->context_size;
|
|
}
|
|
|
|
if (digest_sz < hash->digest_size)
|
|
{
|
|
if (!(new = whine_malloc(hash->digest_size)))
|
|
return 0;
|
|
if (digest)
|
|
free(digest);
|
|
digest = new;
|
|
digest_sz = hash->digest_size;
|
|
}
|
|
|
|
*ctxp = ctx;
|
|
*digestp = digest;
|
|
|
|
hash->init(ctx);
|
|
|
|
return 1;
|
|
}
|
|
|
|
static int rsa_verify(struct blockdata *key_data, unsigned int key_len, unsigned char *sig, size_t sig_len,
|
|
unsigned char *digest, int algo)
|
|
{
|
|
unsigned char *p;
|
|
size_t exp_len;
|
|
|
|
static struct rsa_public_key *key = NULL;
|
|
static mpz_t sig_mpz;
|
|
|
|
if (key == NULL)
|
|
{
|
|
if (!(key = whine_malloc(sizeof(struct rsa_public_key))))
|
|
return 0;
|
|
|
|
nettle_rsa_public_key_init(key);
|
|
mpz_init(sig_mpz);
|
|
}
|
|
|
|
if ((key_len < 3) || !(p = blockdata_retrieve(key_data, key_len, NULL)))
|
|
return 0;
|
|
|
|
key_len--;
|
|
if ((exp_len = *p++) == 0)
|
|
{
|
|
GETSHORT(exp_len, p);
|
|
key_len -= 2;
|
|
}
|
|
|
|
if (exp_len >= key_len)
|
|
return 0;
|
|
|
|
key->size = key_len - exp_len;
|
|
mpz_import(key->e, exp_len, 1, 1, 0, 0, p);
|
|
mpz_import(key->n, key->size, 1, 1, 0, 0, p + exp_len);
|
|
|
|
mpz_import(sig_mpz, sig_len, 1, 1, 0, 0, sig);
|
|
|
|
switch (algo)
|
|
{
|
|
case 1:
|
|
return nettle_rsa_md5_verify_digest(key, digest, sig_mpz);
|
|
case 5: case 7:
|
|
return nettle_rsa_sha1_verify_digest(key, digest, sig_mpz);
|
|
case 8:
|
|
return nettle_rsa_sha256_verify_digest(key, digest, sig_mpz);
|
|
case 10:
|
|
return nettle_rsa_sha512_verify_digest(key, digest, sig_mpz);
|
|
}
|
|
|
|
return 0;
|
|
}
|
|
|
|
static int dsa_verify(struct blockdata *key_data, unsigned int key_len, unsigned char *sig, size_t sig_len,
|
|
unsigned char *digest, int algo)
|
|
{
|
|
unsigned char *p;
|
|
unsigned int t;
|
|
|
|
static struct dsa_public_key *key = NULL;
|
|
static struct dsa_signature *sig_struct;
|
|
|
|
if (key == NULL)
|
|
{
|
|
if (!(sig_struct = whine_malloc(sizeof(struct dsa_signature))) ||
|
|
!(key = whine_malloc(sizeof(struct dsa_public_key))))
|
|
return 0;
|
|
|
|
nettle_dsa_public_key_init(key);
|
|
nettle_dsa_signature_init(sig_struct);
|
|
}
|
|
|
|
if ((sig_len < 41) || !(p = blockdata_retrieve(key_data, key_len, NULL)))
|
|
return 0;
|
|
|
|
t = *p++;
|
|
|
|
if (key_len < (213 + (t * 24)))
|
|
return 0;
|
|
|
|
mpz_import(key->q, 20, 1, 1, 0, 0, p); p += 20;
|
|
mpz_import(key->p, 64 + (t*8), 1, 1, 0, 0, p); p += 64 + (t*8);
|
|
mpz_import(key->g, 64 + (t*8), 1, 1, 0, 0, p); p += 64 + (t*8);
|
|
mpz_import(key->y, 64 + (t*8), 1, 1, 0, 0, p); p += 64 + (t*8);
|
|
|
|
mpz_import(sig_struct->r, 20, 1, 1, 0, 0, sig+1);
|
|
mpz_import(sig_struct->s, 20, 1, 1, 0, 0, sig+21);
|
|
|
|
(void)algo;
|
|
|
|
return nettle_dsa_sha1_verify_digest(key, digest, sig_struct);
|
|
}
|
|
|
|
#ifndef NO_NETTLE_ECC
|
|
static int dnsmasq_ecdsa_verify(struct blockdata *key_data, unsigned int key_len,
|
|
unsigned char *sig, size_t sig_len,
|
|
unsigned char *digest, size_t digest_len, int algo)
|
|
{
|
|
unsigned char *p;
|
|
unsigned int t;
|
|
struct ecc_point *key;
|
|
|
|
static struct ecc_point *key_256 = NULL, *key_384 = NULL;
|
|
static mpz_t x, y;
|
|
static struct dsa_signature *sig_struct;
|
|
|
|
if (!sig_struct)
|
|
{
|
|
if (!(sig_struct = whine_malloc(sizeof(struct dsa_signature))))
|
|
return 0;
|
|
|
|
nettle_dsa_signature_init(sig_struct);
|
|
mpz_init(x);
|
|
mpz_init(y);
|
|
}
|
|
|
|
switch (algo)
|
|
{
|
|
case 13:
|
|
if (!key_256)
|
|
{
|
|
if (!(key_256 = whine_malloc(sizeof(struct ecc_point))))
|
|
return 0;
|
|
|
|
nettle_ecc_point_init(key_256, &nettle_secp_256r1);
|
|
}
|
|
|
|
key = key_256;
|
|
t = 32;
|
|
break;
|
|
|
|
case 14:
|
|
if (!key_384)
|
|
{
|
|
if (!(key_384 = whine_malloc(sizeof(struct ecc_point))))
|
|
return 0;
|
|
|
|
nettle_ecc_point_init(key_384, &nettle_secp_384r1);
|
|
}
|
|
|
|
key = key_384;
|
|
t = 48;
|
|
break;
|
|
|
|
default:
|
|
return 0;
|
|
}
|
|
|
|
if (sig_len != 2*t || key_len != 2*t ||
|
|
(p = blockdata_retrieve(key_data, key_len, NULL)))
|
|
return 0;
|
|
|
|
mpz_import(x, t , 1, 1, 0, 0, p);
|
|
mpz_import(y, t , 1, 1, 0, 0, p + t);
|
|
|
|
if (!ecc_point_set(key, x, y))
|
|
return 0;
|
|
|
|
mpz_import(sig_struct->r, t, 1, 1, 0, 0, sig);
|
|
mpz_import(sig_struct->s, t, 1, 1, 0, 0, sig + t);
|
|
|
|
return nettle_ecdsa_verify(key, digest_len, digest, sig_struct);
|
|
}
|
|
#endif
|
|
|
|
static int verify(struct blockdata *key_data, unsigned int key_len, unsigned char *sig, size_t sig_len,
|
|
unsigned char *digest, size_t digest_len, int algo)
|
|
{
|
|
(void)digest_len;
|
|
|
|
switch (algo)
|
|
{
|
|
case 1: case 5: case 7: case 8: case 10:
|
|
return rsa_verify(key_data, key_len, sig, sig_len, digest, algo);
|
|
|
|
case 3: case 6:
|
|
return dsa_verify(key_data, key_len, sig, sig_len, digest, algo);
|
|
|
|
#ifndef NO_NETTLE_ECC
|
|
case 13: case 14:
|
|
return dnsmasq_ecdsa_verify(key_data, key_len, sig, sig_len, digest, digest_len, algo);
|
|
#endif
|
|
}
|
|
|
|
return 0;
|
|
}
|
|
|
|
/* Convert from presentation format to wire format, in place.
|
|
Also map UC -> LC.
|
|
Note that using extract_name to get presentation format
|
|
then calling to_wire() removes compression and maps case,
|
|
thus generating names in canonical form.
|
|
Calling to_wire followed by from_wire is almost an identity,
|
|
except that the UC remains mapped to LC.
|
|
*/
|
|
static int to_wire(char *name)
|
|
{
|
|
unsigned char *l, *p, term;
|
|
int len;
|
|
|
|
for (l = (unsigned char*)name; *l != 0; l = p)
|
|
{
|
|
for (p = l; *p != '.' && *p != 0; p++)
|
|
if (*p >= 'A' && *p <= 'Z')
|
|
*p = *p - 'A' + 'a';
|
|
|
|
term = *p;
|
|
|
|
if ((len = p - l) != 0)
|
|
memmove(l+1, l, len);
|
|
*l = len;
|
|
|
|
p++;
|
|
|
|
if (term == 0)
|
|
*p = 0;
|
|
}
|
|
|
|
return l + 1 - (unsigned char *)name;
|
|
}
|
|
|
|
/* Note: no compression allowed in input. */
|
|
static void from_wire(char *name)
|
|
{
|
|
unsigned char *l;
|
|
int len;
|
|
|
|
for (l = (unsigned char *)name; *l != 0; l += len+1)
|
|
{
|
|
len = *l;
|
|
memmove(l, l+1, len);
|
|
l[len] = '.';
|
|
}
|
|
|
|
if ((char *)l != name)
|
|
*(l-1) = 0;
|
|
}
|
|
|
|
/* Input in presentation format */
|
|
static int count_labels(char *name)
|
|
{
|
|
int i;
|
|
|
|
if (*name == 0)
|
|
return 0;
|
|
|
|
for (i = 0; *name; name++)
|
|
if (*name == '.')
|
|
i++;
|
|
|
|
return i+1;
|
|
}
|
|
|
|
/* Implement RFC1982 wrapped compare for 32-bit numbers */
|
|
static int serial_compare_32(unsigned long s1, unsigned long s2)
|
|
{
|
|
if (s1 == s2)
|
|
return SERIAL_EQ;
|
|
|
|
if ((s1 < s2 && (s2 - s1) < (1UL<<31)) ||
|
|
(s1 > s2 && (s1 - s2) > (1UL<<31)))
|
|
return SERIAL_LT;
|
|
if ((s1 < s2 && (s2 - s1) > (1UL<<31)) ||
|
|
(s1 > s2 && (s1 - s2) < (1UL<<31)))
|
|
return SERIAL_GT;
|
|
return SERIAL_UNDEF;
|
|
}
|
|
|
|
/* Check whether today/now is between date_start and date_end */
|
|
static int check_date_range(unsigned long date_start, unsigned long date_end)
|
|
{
|
|
unsigned long curtime;
|
|
|
|
/* Checking timestamps may be temporarily disabled */
|
|
if (option_bool(OPT_DNSSEC_TIME))
|
|
return 1;
|
|
|
|
curtime = time(0);
|
|
|
|
/* We must explicitly check against wanted values, because of SERIAL_UNDEF */
|
|
return serial_compare_32(curtime, date_start) == SERIAL_GT
|
|
&& serial_compare_32(curtime, date_end) == SERIAL_LT;
|
|
}
|
|
|
|
static u16 *get_desc(int type)
|
|
{
|
|
/* List of RRtypes which include domains in the data.
|
|
0 -> domain
|
|
integer -> no of plain bytes
|
|
-1 -> end
|
|
|
|
zero is not a valid RRtype, so the final entry is returned for
|
|
anything which needs no mangling.
|
|
*/
|
|
|
|
static u16 rr_desc[] =
|
|
{
|
|
T_NS, 0, -1,
|
|
T_MD, 0, -1,
|
|
T_MF, 0, -1,
|
|
T_CNAME, 0, -1,
|
|
T_SOA, 0, 0, -1,
|
|
T_MB, 0, -1,
|
|
T_MG, 0, -1,
|
|
T_MR, 0, -1,
|
|
T_PTR, 0, -1,
|
|
T_MINFO, 0, 0, -1,
|
|
T_MX, 2, 0, -1,
|
|
T_RP, 0, 0, -1,
|
|
T_AFSDB, 2, 0, -1,
|
|
T_RT, 2, 0, -1,
|
|
T_SIG, 18, 0, -1,
|
|
T_PX, 2, 0, 0, -1,
|
|
T_NXT, 0, -1,
|
|
T_KX, 2, 0, -1,
|
|
T_SRV, 6, 0, -1,
|
|
T_DNAME, 0, -1,
|
|
0, -1 /* wildcard/catchall */
|
|
};
|
|
|
|
u16 *p = rr_desc;
|
|
|
|
while (*p != type && *p != 0)
|
|
while (*p++ != (u16)-1);
|
|
|
|
return p+1;
|
|
}
|
|
|
|
/* Return bytes of canonicalised rdata, when the return value is zero, the remaining
|
|
data, pointed to by *p, should be used raw. */
|
|
static int get_rdata(struct dns_header *header, size_t plen, unsigned char *end, char *buff,
|
|
unsigned char **p, u16 **desc)
|
|
{
|
|
int d = **desc;
|
|
|
|
(*desc)++;
|
|
|
|
/* No more data needs mangling */
|
|
if (d == (u16)-1)
|
|
return 0;
|
|
|
|
if (d == 0 && extract_name(header, plen, p, buff, 1, 0))
|
|
/* domain-name, canonicalise */
|
|
return to_wire(buff);
|
|
else
|
|
{
|
|
/* plain data preceding a domain-name, don't run off the end of the data */
|
|
if ((end - *p) < d)
|
|
d = end - *p;
|
|
|
|
if (d != 0)
|
|
{
|
|
memcpy(buff, *p, d);
|
|
*p += d;
|
|
}
|
|
|
|
return d;
|
|
}
|
|
}
|
|
|
|
static int expand_workspace(unsigned char ***wkspc, int *sz, int new)
|
|
{
|
|
unsigned char **p;
|
|
int new_sz = *sz;
|
|
|
|
if (new_sz > new)
|
|
return 1;
|
|
|
|
if (new >= 100)
|
|
return 0;
|
|
|
|
new_sz += 5;
|
|
|
|
if (!(p = whine_malloc((new_sz) * sizeof(unsigned char **))))
|
|
return 0;
|
|
|
|
if (*wkspc)
|
|
{
|
|
memcpy(p, *wkspc, *sz * sizeof(unsigned char **));
|
|
free(*wkspc);
|
|
}
|
|
|
|
*wkspc = p;
|
|
*sz = new_sz;
|
|
|
|
return 1;
|
|
}
|
|
|
|
/* Bubble sort the RRset into the canonical order.
|
|
Note that the byte-streams from two RRs may get unsynced: consider
|
|
RRs which have two domain-names at the start and then other data.
|
|
The domain-names may have different lengths in each RR, but sort equal
|
|
|
|
------------
|
|
|abcde|fghi|
|
|
------------
|
|
|abcd|efghi|
|
|
------------
|
|
|
|
leaving the following bytes as deciding the order. Hence the nasty left1 and left2 variables.
|
|
*/
|
|
|
|
static void sort_rrset(struct dns_header *header, size_t plen, u16 *rr_desc, int rrsetidx,
|
|
unsigned char **rrset, char *buff1, char *buff2)
|
|
{
|
|
int swap, quit, i;
|
|
|
|
do
|
|
{
|
|
for (swap = 0, i = 0; i < rrsetidx-1; i++)
|
|
{
|
|
int rdlen1, rdlen2, left1, left2, len1, len2, len, rc;
|
|
u16 *dp1, *dp2;
|
|
unsigned char *end1, *end2;
|
|
/* Note that these have been determined to be OK previously,
|
|
so we don't need to check for NULL return here. */
|
|
unsigned char *p1 = skip_name(rrset[i], header, plen, 10);
|
|
unsigned char *p2 = skip_name(rrset[i+1], header, plen, 10);
|
|
|
|
p1 += 8; /* skip class, type, ttl */
|
|
GETSHORT(rdlen1, p1);
|
|
end1 = p1 + rdlen1;
|
|
|
|
p2 += 8; /* skip class, type, ttl */
|
|
GETSHORT(rdlen2, p2);
|
|
end2 = p2 + rdlen2;
|
|
|
|
dp1 = dp2 = rr_desc;
|
|
|
|
for (quit = 0, left1 = 0, left2 = 0, len1 = 0, len2 = 0; !quit;)
|
|
{
|
|
if (left1 != 0)
|
|
memmove(buff1, buff1 + len1 - left1, left1);
|
|
|
|
if ((len1 = get_rdata(header, plen, end1, buff1 + left1, &p1, &dp1)) == 0)
|
|
{
|
|
quit = 1;
|
|
len1 = end1 - p1;
|
|
memcpy(buff1 + left1, p1, len1);
|
|
}
|
|
len1 += left1;
|
|
|
|
if (left2 != 0)
|
|
memmove(buff2, buff2 + len2 - left2, left2);
|
|
|
|
if ((len2 = get_rdata(header, plen, end2, buff2 + left2, &p2, &dp2)) == 0)
|
|
{
|
|
quit = 1;
|
|
len2 = end2 - p2;
|
|
memcpy(buff2 + left2, p2, len2);
|
|
}
|
|
len2 += left2;
|
|
|
|
if (len1 > len2)
|
|
left1 = len1 - len2, left2 = 0, len = len2;
|
|
else
|
|
left2 = len2 - len1, left1 = 0, len = len1;
|
|
|
|
rc = (len == 0) ? 0 : memcmp(buff1, buff2, len);
|
|
|
|
if (rc > 0 || (rc == 0 && quit && len1 > len2))
|
|
{
|
|
unsigned char *tmp = rrset[i+1];
|
|
rrset[i+1] = rrset[i];
|
|
rrset[i] = tmp;
|
|
swap = quit = 1;
|
|
}
|
|
else if (rc < 0)
|
|
quit = 1;
|
|
}
|
|
}
|
|
} while (swap);
|
|
}
|
|
|
|
/* Validate a single RRset (class, type, name) in the supplied DNS reply
|
|
Return code:
|
|
STAT_SECURE if it validates.
|
|
STAT_SECURE_WILDCARD if it validates and is the result of wildcard expansion.
|
|
STAT_NO_SIG no RRsigs found.
|
|
STAT_INSECURE RRset empty.
|
|
STAT_BOGUS signature is wrong, bad packet.
|
|
STAT_NEED_KEY need DNSKEY to complete validation (name is returned in keyname)
|
|
|
|
if key is non-NULL, use that key, which has the algo and tag given in the params of those names,
|
|
otherwise find the key in the cache.
|
|
|
|
name is unchanged on exit. keyname is used as workspace and trashed.
|
|
*/
|
|
static int validate_rrset(time_t now, struct dns_header *header, size_t plen, int class,
|
|
int type, char *name, char *keyname, struct blockdata *key, int keylen, int algo_in, int keytag_in)
|
|
{
|
|
static unsigned char **rrset = NULL, **sigs = NULL;
|
|
static int rrset_sz = 0, sig_sz = 0;
|
|
|
|
unsigned char *p;
|
|
int rrsetidx, sigidx, res, rdlen, j, name_labels;
|
|
struct crec *crecp = NULL;
|
|
int type_covered, algo, labels, orig_ttl, sig_expiration, sig_inception, key_tag;
|
|
u16 *rr_desc = get_desc(type);
|
|
|
|
if (!(p = skip_questions(header, plen)))
|
|
return STAT_BOGUS;
|
|
|
|
name_labels = count_labels(name); /* For 4035 5.3.2 check */
|
|
|
|
/* look for RRSIGs for this RRset and get pointers to each RR in the set. */
|
|
for (rrsetidx = 0, sigidx = 0, j = ntohs(header->ancount) + ntohs(header->nscount);
|
|
j != 0; j--)
|
|
{
|
|
unsigned char *pstart, *pdata;
|
|
int stype, sclass;
|
|
|
|
pstart = p;
|
|
|
|
if (!(res = extract_name(header, plen, &p, name, 0, 10)))
|
|
return STAT_BOGUS; /* bad packet */
|
|
|
|
GETSHORT(stype, p);
|
|
GETSHORT(sclass, p);
|
|
p += 4; /* TTL */
|
|
|
|
pdata = p;
|
|
|
|
GETSHORT(rdlen, p);
|
|
|
|
if (!CHECK_LEN(header, p, plen, rdlen))
|
|
return STAT_BOGUS;
|
|
|
|
if (res == 1 && sclass == class)
|
|
{
|
|
if (stype == type)
|
|
{
|
|
if (!expand_workspace(&rrset, &rrset_sz, rrsetidx))
|
|
return STAT_BOGUS;
|
|
|
|
rrset[rrsetidx++] = pstart;
|
|
}
|
|
|
|
if (stype == T_RRSIG)
|
|
{
|
|
if (rdlen < 18)
|
|
return STAT_BOGUS; /* bad packet */
|
|
|
|
GETSHORT(type_covered, p);
|
|
|
|
if (type_covered == type)
|
|
{
|
|
if (!expand_workspace(&sigs, &sig_sz, sigidx))
|
|
return STAT_BOGUS;
|
|
|
|
sigs[sigidx++] = pdata;
|
|
}
|
|
|
|
p = pdata + 2; /* restore for ADD_RDLEN */
|
|
}
|
|
}
|
|
|
|
if (!ADD_RDLEN(header, p, plen, rdlen))
|
|
return STAT_BOGUS;
|
|
}
|
|
|
|
/* RRset empty */
|
|
if (rrsetidx == 0)
|
|
return STAT_INSECURE;
|
|
|
|
/* no RRSIGs */
|
|
if (sigidx == 0)
|
|
return STAT_NO_SIG;
|
|
|
|
/* Sort RRset records into canonical order.
|
|
Note that at this point keyname and daemon->workspacename buffs are
|
|
unused, and used as workspace by the sort. */
|
|
sort_rrset(header, plen, rr_desc, rrsetidx, rrset, daemon->workspacename, keyname);
|
|
|
|
/* Now try all the sigs to try and find one which validates */
|
|
for (j = 0; j <sigidx; j++)
|
|
{
|
|
unsigned char *psav, *sig, *digest;
|
|
int i, wire_len, sig_len;
|
|
const struct nettle_hash *hash;
|
|
void *ctx;
|
|
char *name_start;
|
|
u32 nsigttl;
|
|
|
|
p = sigs[j];
|
|
GETSHORT(rdlen, p); /* rdlen >= 18 checked previously */
|
|
psav = p;
|
|
|
|
p += 2; /* type_covered - already checked */
|
|
algo = *p++;
|
|
labels = *p++;
|
|
GETLONG(orig_ttl, p);
|
|
GETLONG(sig_expiration, p);
|
|
GETLONG(sig_inception, p);
|
|
GETSHORT(key_tag, p);
|
|
|
|
if (!extract_name(header, plen, &p, keyname, 1, 0))
|
|
return STAT_BOGUS;
|
|
|
|
/* RFC 4035 5.3.1 says that the Signer's Name field MUST equal
|
|
the name of the zone containing the RRset. We can't tell that
|
|
for certain, but we can check that the RRset name is equal to
|
|
or encloses the signers name, which should be enough to stop
|
|
an attacker using signatures made with the key of an unrelated
|
|
zone he controls. Note that the root key is always allowed. */
|
|
if (*keyname != 0)
|
|
{
|
|
int failed = 0;
|
|
|
|
for (name_start = name; !hostname_isequal(name_start, keyname); )
|
|
if ((name_start = strchr(name_start, '.')))
|
|
name_start++; /* chop a label off and try again */
|
|
else
|
|
{
|
|
failed = 1;
|
|
break;
|
|
}
|
|
|
|
/* Bad sig, try another */
|
|
if (failed)
|
|
continue;
|
|
}
|
|
|
|
/* Other 5.3.1 checks */
|
|
if (!check_date_range(sig_inception, sig_expiration) ||
|
|
labels > name_labels ||
|
|
!(hash = hash_find(algo_digest_name(algo))) ||
|
|
!hash_init(hash, &ctx, &digest))
|
|
continue;
|
|
|
|
/* OK, we have the signature record, see if the relevant DNSKEY is in the cache. */
|
|
if (!key && !(crecp = cache_find_by_name(NULL, keyname, now, F_DNSKEY)))
|
|
return STAT_NEED_KEY;
|
|
|
|
sig = p;
|
|
sig_len = rdlen - (p - psav);
|
|
|
|
nsigttl = htonl(orig_ttl);
|
|
|
|
hash->update(ctx, 18, psav);
|
|
wire_len = to_wire(keyname);
|
|
hash->update(ctx, (unsigned int)wire_len, (unsigned char*)keyname);
|
|
from_wire(keyname);
|
|
|
|
for (i = 0; i < rrsetidx; ++i)
|
|
{
|
|
int seg;
|
|
unsigned char *end, *cp;
|
|
u16 len, *dp;
|
|
|
|
p = rrset[i];
|
|
if (!extract_name(header, plen, &p, name, 1, 10))
|
|
return STAT_BOGUS;
|
|
|
|
name_start = name;
|
|
|
|
/* if more labels than in RRsig name, hash *.<no labels in rrsig labels field> 4035 5.3.2 */
|
|
if (labels < name_labels)
|
|
{
|
|
int k;
|
|
for (k = name_labels - labels; k != 0; k--)
|
|
while (*name_start != '.' && *name_start != 0)
|
|
name_start++;
|
|
name_start--;
|
|
*name_start = '*';
|
|
}
|
|
|
|
wire_len = to_wire(name_start);
|
|
hash->update(ctx, (unsigned int)wire_len, (unsigned char *)name_start);
|
|
hash->update(ctx, 4, p); /* class and type */
|
|
hash->update(ctx, 4, (unsigned char *)&nsigttl);
|
|
|
|
p += 8; /* skip class, type, ttl */
|
|
GETSHORT(rdlen, p);
|
|
if (!CHECK_LEN(header, p, plen, rdlen))
|
|
return STAT_BOGUS;
|
|
|
|
end = p + rdlen;
|
|
|
|
/* canonicalise rdata and calculate length of same, use name buffer as workspace */
|
|
cp = p;
|
|
dp = rr_desc;
|
|
for (len = 0; (seg = get_rdata(header, plen, end, name, &cp, &dp)) != 0; len += seg);
|
|
len += end - cp;
|
|
len = htons(len);
|
|
hash->update(ctx, 2, (unsigned char *)&len);
|
|
|
|
/* Now canonicalise again and digest. */
|
|
cp = p;
|
|
dp = rr_desc;
|
|
while ((seg = get_rdata(header, plen, end, name, &cp, &dp)))
|
|
hash->update(ctx, seg, (unsigned char *)name);
|
|
if (cp != end)
|
|
hash->update(ctx, end - cp, cp);
|
|
}
|
|
|
|
hash->digest(ctx, hash->digest_size, digest);
|
|
|
|
/* namebuff used for workspace above, restore to leave unchanged on exit */
|
|
p = (unsigned char*)(rrset[0]);
|
|
extract_name(header, plen, &p, name, 1, 0);
|
|
|
|
if (key)
|
|
{
|
|
if (algo_in == algo && keytag_in == key_tag &&
|
|
verify(key, keylen, sig, sig_len, digest, hash->digest_size, algo))
|
|
return STAT_SECURE;
|
|
}
|
|
else
|
|
{
|
|
/* iterate through all possible keys 4035 5.3.1 */
|
|
for (; crecp; crecp = cache_find_by_name(crecp, keyname, now, F_DNSKEY))
|
|
if (crecp->addr.key.algo == algo &&
|
|
crecp->addr.key.keytag == key_tag &&
|
|
crecp->uid == (unsigned int)class &&
|
|
verify(crecp->addr.key.keydata, crecp->addr.key.keylen, sig, sig_len, digest, hash->digest_size, algo))
|
|
return (labels < name_labels) ? STAT_SECURE_WILDCARD : STAT_SECURE;
|
|
}
|
|
}
|
|
|
|
return STAT_BOGUS;
|
|
}
|
|
|
|
/* The DNS packet is expected to contain the answer to a DNSKEY query.
|
|
Put all DNSKEYs in the answer which are valid into the cache.
|
|
return codes:
|
|
STAT_INSECURE No DNSKEYs in reply.
|
|
STAT_SECURE At least one valid DNSKEY found and in cache.
|
|
STAT_BOGUS No DNSKEYs found, which can be validated with DS,
|
|
or self-sign for DNSKEY RRset is not valid, bad packet.
|
|
STAT_NEED_DS DS records to validate a key not found, name in keyname
|
|
*/
|
|
int dnssec_validate_by_ds(time_t now, struct dns_header *header, size_t plen, char *name, char *keyname, int class)
|
|
{
|
|
unsigned char *psave, *p = (unsigned char *)(header+1);
|
|
struct crec *crecp, *recp1;
|
|
int rc, j, qtype, qclass, ttl, rdlen, flags, algo, valid, keytag, type_covered;
|
|
struct blockdata *key;
|
|
struct all_addr a;
|
|
|
|
if (ntohs(header->qdcount) != 1 ||
|
|
!extract_name(header, plen, &p, name, 1, 4))
|
|
return STAT_BOGUS;
|
|
|
|
GETSHORT(qtype, p);
|
|
GETSHORT(qclass, p);
|
|
|
|
if (qtype != T_DNSKEY || qclass != class)
|
|
return STAT_BOGUS;
|
|
|
|
if (ntohs(header->ancount) == 0)
|
|
return STAT_INSECURE;
|
|
|
|
/* See if we have cached a DS record which validates this key */
|
|
if (!(crecp = cache_find_by_name(NULL, name, now, F_DS)))
|
|
{
|
|
strcpy(keyname, name);
|
|
return STAT_NEED_DS;
|
|
}
|
|
|
|
/* If we've cached that DS provably doesn't exist, result must be INSECURE */
|
|
if (crecp->flags & F_NEG)
|
|
return STAT_INSECURE;
|
|
|
|
/* NOTE, we need to find ONE DNSKEY which matches the DS */
|
|
for (valid = 0, j = ntohs(header->ancount); j != 0 && !valid; j--)
|
|
{
|
|
/* Ensure we have type, class TTL and length */
|
|
if (!(rc = extract_name(header, plen, &p, name, 0, 10)))
|
|
return STAT_BOGUS; /* bad packet */
|
|
|
|
GETSHORT(qtype, p);
|
|
GETSHORT(qclass, p);
|
|
GETLONG(ttl, p);
|
|
GETSHORT(rdlen, p);
|
|
|
|
if (!CHECK_LEN(header, p, plen, rdlen) || rdlen < 4)
|
|
return STAT_BOGUS; /* bad packet */
|
|
|
|
if (qclass != class || qtype != T_DNSKEY || rc == 2)
|
|
{
|
|
p += rdlen;
|
|
continue;
|
|
}
|
|
|
|
psave = p;
|
|
|
|
GETSHORT(flags, p);
|
|
if (*p++ != 3)
|
|
return STAT_BOGUS;
|
|
algo = *p++;
|
|
keytag = dnskey_keytag(algo, flags, p, rdlen - 4);
|
|
key = NULL;
|
|
|
|
/* key must have zone key flag set */
|
|
if (flags & 0x100)
|
|
key = blockdata_alloc((char*)p, rdlen - 4);
|
|
|
|
p = psave;
|
|
|
|
if (!ADD_RDLEN(header, p, plen, rdlen))
|
|
{
|
|
if (key)
|
|
blockdata_free(key);
|
|
return STAT_BOGUS; /* bad packet */
|
|
}
|
|
|
|
/* No zone key flag or malloc failure */
|
|
if (!key)
|
|
continue;
|
|
|
|
for (recp1 = crecp; recp1; recp1 = cache_find_by_name(recp1, name, now, F_DS))
|
|
{
|
|
void *ctx;
|
|
unsigned char *digest, *ds_digest;
|
|
const struct nettle_hash *hash;
|
|
|
|
if (recp1->addr.ds.algo == algo &&
|
|
recp1->addr.ds.keytag == keytag &&
|
|
recp1->uid == (unsigned int)class &&
|
|
(hash = hash_find(ds_digest_name(recp1->addr.ds.digest))) &&
|
|
hash_init(hash, &ctx, &digest))
|
|
|
|
{
|
|
int wire_len = to_wire(name);
|
|
|
|
/* Note that digest may be different between DSs, so
|
|
we can't move this outside the loop. */
|
|
hash->update(ctx, (unsigned int)wire_len, (unsigned char *)name);
|
|
hash->update(ctx, (unsigned int)rdlen, psave);
|
|
hash->digest(ctx, hash->digest_size, digest);
|
|
|
|
from_wire(name);
|
|
|
|
if (recp1->addr.ds.keylen == (int)hash->digest_size &&
|
|
(ds_digest = blockdata_retrieve(recp1->addr.key.keydata, recp1->addr.ds.keylen, NULL)) &&
|
|
memcmp(ds_digest, digest, recp1->addr.ds.keylen) == 0 &&
|
|
validate_rrset(now, header, plen, class, T_DNSKEY, name, keyname, key, rdlen - 4, algo, keytag) == STAT_SECURE)
|
|
{
|
|
valid = 1;
|
|
break;
|
|
}
|
|
}
|
|
}
|
|
blockdata_free(key);
|
|
}
|
|
|
|
if (valid)
|
|
{
|
|
/* DNSKEY RRset determined to be OK, now cache it and the RRsigs that sign it. */
|
|
cache_start_insert();
|
|
|
|
p = skip_questions(header, plen);
|
|
|
|
for (j = ntohs(header->ancount); j != 0; j--)
|
|
{
|
|
/* Ensure we have type, class TTL and length */
|
|
if (!(rc = extract_name(header, plen, &p, name, 0, 10)))
|
|
return STAT_INSECURE; /* bad packet */
|
|
|
|
GETSHORT(qtype, p);
|
|
GETSHORT(qclass, p);
|
|
GETLONG(ttl, p);
|
|
GETSHORT(rdlen, p);
|
|
|
|
if (!CHECK_LEN(header, p, plen, rdlen))
|
|
return STAT_BOGUS; /* bad packet */
|
|
|
|
if (qclass == class && rc == 1)
|
|
{
|
|
psave = p;
|
|
|
|
if (qtype == T_DNSKEY)
|
|
{
|
|
if (rdlen < 4)
|
|
return STAT_BOGUS; /* bad packet */
|
|
|
|
GETSHORT(flags, p);
|
|
if (*p++ != 3)
|
|
return STAT_BOGUS;
|
|
algo = *p++;
|
|
keytag = dnskey_keytag(algo, flags, p, rdlen - 4);
|
|
|
|
/* Cache needs to known class for DNSSEC stuff */
|
|
a.addr.dnssec.class = class;
|
|
|
|
if ((key = blockdata_alloc((char*)p, rdlen - 4)))
|
|
{
|
|
if (!(recp1 = cache_insert(name, &a, now, ttl, F_FORWARD | F_DNSKEY | F_DNSSECOK)))
|
|
blockdata_free(key);
|
|
else
|
|
{
|
|
a.addr.keytag = keytag;
|
|
log_query(F_KEYTAG | F_UPSTREAM, name, &a, "DNSKEY keytag %u");
|
|
|
|
recp1->addr.key.keylen = rdlen - 4;
|
|
recp1->addr.key.keydata = key;
|
|
recp1->addr.key.algo = algo;
|
|
recp1->addr.key.keytag = keytag;
|
|
recp1->addr.key.flags = flags;
|
|
}
|
|
}
|
|
}
|
|
else if (qtype == T_RRSIG)
|
|
{
|
|
/* RRSIG, cache if covers DNSKEY RRset */
|
|
if (rdlen < 18)
|
|
return STAT_BOGUS; /* bad packet */
|
|
|
|
GETSHORT(type_covered, p);
|
|
|
|
if (type_covered == T_DNSKEY)
|
|
{
|
|
a.addr.dnssec.class = class;
|
|
a.addr.dnssec.type = type_covered;
|
|
|
|
algo = *p++;
|
|
p += 13; /* labels, orig_ttl, expiration, inception */
|
|
GETSHORT(keytag, p);
|
|
if ((key = blockdata_alloc((char*)psave, rdlen)))
|
|
{
|
|
if (!(crecp = cache_insert(name, &a, now, ttl, F_FORWARD | F_DNSKEY | F_DS)))
|
|
blockdata_free(key);
|
|
else
|
|
{
|
|
crecp->addr.sig.keydata = key;
|
|
crecp->addr.sig.keylen = rdlen;
|
|
crecp->addr.sig.keytag = keytag;
|
|
crecp->addr.sig.type_covered = type_covered;
|
|
crecp->addr.sig.algo = algo;
|
|
}
|
|
}
|
|
}
|
|
}
|
|
|
|
p = psave;
|
|
}
|
|
|
|
if (!ADD_RDLEN(header, p, plen, rdlen))
|
|
return STAT_BOGUS; /* bad packet */
|
|
}
|
|
|
|
/* commit cache insert. */
|
|
cache_end_insert();
|
|
return STAT_SECURE;
|
|
}
|
|
|
|
log_query(F_UPSTREAM, name, NULL, "BOGUS DNSKEY");
|
|
return STAT_BOGUS;
|
|
}
|
|
|
|
/* The DNS packet is expected to contain the answer to a DS query
|
|
Put all DSs in the answer which are valid into the cache.
|
|
return codes:
|
|
STAT_INSECURE no DS in reply or not signed.
|
|
STAT_SECURE At least one valid DS found and in cache.
|
|
STAT_NO_DS It's proved there's no DS here.
|
|
STAT_BOGUS At least one DS found, which fails validation, bad packet.
|
|
STAT_NEED_DNSKEY DNSKEY records to validate a DS not found, name in keyname
|
|
*/
|
|
|
|
int dnssec_validate_ds(time_t now, struct dns_header *header, size_t plen, char *name, char *keyname, int class)
|
|
{
|
|
unsigned char *p = (unsigned char *)(header+1);
|
|
int qtype, qclass, val, i, neganswer;
|
|
|
|
if (ntohs(header->qdcount) != 1 ||
|
|
!(p = skip_name(p, header, plen, 4)))
|
|
return STAT_BOGUS;
|
|
|
|
GETSHORT(qtype, p);
|
|
GETSHORT(qclass, p);
|
|
|
|
if (qtype != T_DS || qclass != class)
|
|
val = STAT_BOGUS;
|
|
else
|
|
val = dnssec_validate_reply(now, header, plen, name, keyname, NULL, &neganswer);
|
|
|
|
if (val == STAT_NO_SIG)
|
|
val = STAT_INSECURE;
|
|
|
|
p = (unsigned char *)(header+1);
|
|
extract_name(header, plen, &p, name, 1, 4);
|
|
p += 4; /* qtype, qclass */
|
|
|
|
if (!(p = skip_section(p, ntohs(header->ancount), header, plen)))
|
|
return STAT_BOGUS;
|
|
|
|
if (val == STAT_BOGUS)
|
|
log_query(F_UPSTREAM, name, NULL, "BOGUS DS");
|
|
|
|
if ((val == STAT_SECURE || val == STAT_INSECURE) && neganswer)
|
|
{
|
|
int rdlen, flags = F_FORWARD | F_DS | F_NEG;
|
|
unsigned long ttl, minttl = ULONG_MAX;
|
|
struct all_addr a;
|
|
|
|
if (RCODE(header) == NXDOMAIN)
|
|
flags |= F_NXDOMAIN;
|
|
|
|
if (val == STAT_SECURE)
|
|
flags |= F_DNSSECOK;
|
|
|
|
for (i = ntohs(header->nscount); i != 0; i--)
|
|
{
|
|
if (!(p = skip_name(p, header, plen, 0)))
|
|
return STAT_BOGUS;
|
|
|
|
GETSHORT(qtype, p);
|
|
GETSHORT(qclass, p);
|
|
GETLONG(ttl, p);
|
|
GETSHORT(rdlen, p);
|
|
|
|
if (!CHECK_LEN(header, p, plen, rdlen))
|
|
return STAT_BOGUS; /* bad packet */
|
|
|
|
if (qclass != class || qtype != T_SOA)
|
|
{
|
|
p += rdlen;
|
|
continue;
|
|
}
|
|
|
|
if (ttl < minttl)
|
|
minttl = ttl;
|
|
|
|
/* MNAME */
|
|
if (!(p = skip_name(p, header, plen, 0)))
|
|
return STAT_BOGUS;
|
|
/* RNAME */
|
|
if (!(p = skip_name(p, header, plen, 20)))
|
|
return STAT_BOGUS;
|
|
p += 16; /* SERIAL REFRESH RETRY EXPIRE */
|
|
|
|
GETLONG(ttl, p); /* minTTL */
|
|
if (ttl < minttl)
|
|
minttl = ttl;
|
|
|
|
break;
|
|
}
|
|
|
|
if (i != 0)
|
|
{
|
|
cache_start_insert();
|
|
|
|
a.addr.dnssec.class = class;
|
|
cache_insert(name, &a, now, ttl, flags);
|
|
|
|
cache_end_insert();
|
|
}
|
|
|
|
return (val == STAT_SECURE) ? STAT_NO_DS : STAT_INSECURE;
|
|
}
|
|
|
|
return val;
|
|
}
|
|
|
|
/* 4034 6.1 */
|
|
static int hostname_cmp(const char *a, const char *b)
|
|
{
|
|
char *sa, *ea, *ca, *sb, *eb, *cb;
|
|
unsigned char ac, bc;
|
|
|
|
sa = ea = (char *)a + strlen(a);
|
|
sb = eb = (char *)b + strlen(b);
|
|
|
|
while (1)
|
|
{
|
|
while (sa != a && *(sa-1) != '.')
|
|
sa--;
|
|
|
|
while (sb != b && *(sb-1) != '.')
|
|
sb--;
|
|
|
|
ca = sa;
|
|
cb = sb;
|
|
|
|
while (1)
|
|
{
|
|
if (ca == ea)
|
|
{
|
|
if (cb == eb)
|
|
break;
|
|
|
|
return -1;
|
|
}
|
|
|
|
if (cb == eb)
|
|
return 1;
|
|
|
|
ac = (unsigned char) *ca++;
|
|
bc = (unsigned char) *cb++;
|
|
|
|
if (ac >= 'A' && ac <= 'Z')
|
|
ac += 'a' - 'A';
|
|
if (bc >= 'A' && bc <= 'Z')
|
|
bc += 'a' - 'A';
|
|
|
|
if (ac < bc)
|
|
return -1;
|
|
else if (ac != bc)
|
|
return 1;
|
|
}
|
|
|
|
|
|
if (sa == a)
|
|
{
|
|
if (sb == b)
|
|
return 0;
|
|
|
|
return -1;
|
|
}
|
|
|
|
if (sb == b)
|
|
return 1;
|
|
|
|
ea = sa--;
|
|
eb = sb--;
|
|
}
|
|
}
|
|
|
|
/* Find all the NSEC or NSEC3 records in a reply.
|
|
return an array of pointers to them. */
|
|
static int find_nsec_records(struct dns_header *header, size_t plen, unsigned char ***nsecsetp, int *nsecsetl, int class_reqd)
|
|
{
|
|
static unsigned char **nsecset = NULL;
|
|
static int nsecset_sz = 0;
|
|
|
|
int type_found = 0;
|
|
unsigned char *p = skip_questions(header, plen);
|
|
int type, class, rdlen, i, nsecs_found;
|
|
|
|
/* Move to NS section */
|
|
if (!p || !(p = skip_section(p, ntohs(header->ancount), header, plen)))
|
|
return 0;
|
|
|
|
for (nsecs_found = 0, i = ntohs(header->nscount); i != 0; i--)
|
|
{
|
|
unsigned char *pstart = p;
|
|
|
|
if (!(p = skip_name(p, header, plen, 10)))
|
|
return 0;
|
|
|
|
GETSHORT(type, p);
|
|
GETSHORT(class, p);
|
|
p += 4; /* TTL */
|
|
GETSHORT(rdlen, p);
|
|
|
|
if (class == class_reqd && (type == T_NSEC || type == T_NSEC3))
|
|
{
|
|
/* No mixed NSECing 'round here, thankyouverymuch */
|
|
if (type_found == T_NSEC && type == T_NSEC3)
|
|
return 0;
|
|
if (type_found == T_NSEC3 && type == T_NSEC)
|
|
return 0;
|
|
|
|
type_found = type;
|
|
|
|
if (!expand_workspace(&nsecset, &nsecset_sz, nsecs_found))
|
|
return 0;
|
|
|
|
nsecset[nsecs_found++] = pstart;
|
|
}
|
|
|
|
if (!ADD_RDLEN(header, p, plen, rdlen))
|
|
return 0;
|
|
}
|
|
|
|
*nsecsetp = nsecset;
|
|
*nsecsetl = nsecs_found;
|
|
|
|
return type_found;
|
|
}
|
|
|
|
static int prove_non_existence_nsec(struct dns_header *header, size_t plen, unsigned char **nsecs, int nsec_count,
|
|
char *workspace1, char *workspace2, char *name, int type)
|
|
{
|
|
int i, rc, rdlen;
|
|
unsigned char *p, *psave;
|
|
int offset = (type & 0xff) >> 3;
|
|
int mask = 0x80 >> (type & 0x07);
|
|
|
|
/* Find NSEC record that proves name doesn't exist */
|
|
for (i = 0; i < nsec_count; i++)
|
|
{
|
|
p = nsecs[i];
|
|
if (!extract_name(header, plen, &p, workspace1, 1, 10))
|
|
return STAT_BOGUS;
|
|
p += 8; /* class, type, TTL */
|
|
GETSHORT(rdlen, p);
|
|
psave = p;
|
|
if (!extract_name(header, plen, &p, workspace2, 1, 10))
|
|
return STAT_BOGUS;
|
|
|
|
rc = hostname_cmp(workspace1, name);
|
|
|
|
if (rc == 0)
|
|
{
|
|
/* 4035 para 5.4. Last sentence */
|
|
if (type == T_NSEC || type == T_RRSIG)
|
|
return STAT_SECURE;
|
|
|
|
/* NSEC with the same name as the RR we're testing, check
|
|
that the type in question doesn't appear in the type map */
|
|
rdlen -= p - psave;
|
|
/* rdlen is now length of type map, and p points to it */
|
|
|
|
while (rdlen >= 2)
|
|
{
|
|
if (!CHECK_LEN(header, p, plen, rdlen))
|
|
return STAT_BOGUS;
|
|
|
|
if (p[0] == type >> 8)
|
|
{
|
|
/* Does the NSEC say our type exists? */
|
|
if (offset < p[1] && (p[offset+2] & mask) != 0)
|
|
return STAT_BOGUS;
|
|
|
|
break; /* finshed checking */
|
|
}
|
|
|
|
rdlen -= p[1];
|
|
p += p[1];
|
|
}
|
|
|
|
return STAT_SECURE;
|
|
}
|
|
else if (rc == -1)
|
|
{
|
|
/* Normal case, name falls between NSEC name and next domain name,
|
|
wrap around case, name falls between NSEC name (rc == -1) and end */
|
|
if (hostname_cmp(workspace2, name) == 1 || hostname_cmp(workspace1, workspace2) == 1)
|
|
return STAT_SECURE;
|
|
}
|
|
else
|
|
{
|
|
/* wrap around case, name falls between start and next domain name */
|
|
if (hostname_cmp(workspace1, workspace2) == 1 && hostname_cmp(workspace2, name) == 1)
|
|
return STAT_SECURE;
|
|
}
|
|
}
|
|
|
|
return STAT_BOGUS;
|
|
}
|
|
|
|
/* return digest length, or zero on error */
|
|
static int hash_name(char *in, unsigned char **out, struct nettle_hash const *hash,
|
|
unsigned char *salt, int salt_len, int iterations)
|
|
{
|
|
void *ctx;
|
|
unsigned char *digest;
|
|
int i;
|
|
|
|
if (!hash_init(hash, &ctx, &digest))
|
|
return 0;
|
|
|
|
hash->update(ctx, to_wire(in), (unsigned char *)in);
|
|
hash->update(ctx, salt_len, salt);
|
|
hash->digest(ctx, hash->digest_size, digest);
|
|
|
|
for(i = 0; i < iterations; i++)
|
|
{
|
|
hash->update(ctx, hash->digest_size, digest);
|
|
hash->update(ctx, salt_len, salt);
|
|
hash->digest(ctx, hash->digest_size, digest);
|
|
}
|
|
|
|
from_wire(in);
|
|
|
|
*out = digest;
|
|
return hash->digest_size;
|
|
}
|
|
|
|
/* Decode base32 to first "." or end of string */
|
|
static int base32_decode(char *in, unsigned char *out)
|
|
{
|
|
int oc, on, c, mask, i;
|
|
unsigned char *p = out;
|
|
|
|
for (c = *in, oc = 0, on = 0; c != 0 && c != '.'; c = *++in)
|
|
{
|
|
if (c >= '0' && c <= '9')
|
|
c -= '0';
|
|
else if (c >= 'a' && c <= 'v')
|
|
c -= 'a', c += 10;
|
|
else if (c >= 'A' && c <= 'V')
|
|
c -= 'A', c += 10;
|
|
else
|
|
return 0;
|
|
|
|
for (mask = 0x10, i = 0; i < 5; i++)
|
|
{
|
|
if (c & mask)
|
|
oc |= 1;
|
|
mask = mask >> 1;
|
|
if (((++on) & 7) == 0)
|
|
*p++ = oc;
|
|
oc = oc << 1;
|
|
}
|
|
}
|
|
|
|
if ((on & 7) != 0)
|
|
return 0;
|
|
|
|
return p - out;
|
|
}
|
|
|
|
static int prove_non_existence_nsec3(struct dns_header *header, size_t plen, unsigned char **nsecs, int nsec_count,
|
|
char *workspace1, char *workspace2, char *name, int type)
|
|
{
|
|
unsigned char *salt, *p, *digest;
|
|
int digest_len, i, iterations, salt_len, hash_len, base32_len, algo = 0;
|
|
struct nettle_hash const *hash;
|
|
char *closest_encloser, *next_closest, *wildcard;
|
|
|
|
/* Look though the NSEC3 records to find the first one with
|
|
an algorithm we support (currently only algo == 1).
|
|
|
|
Take the algo, iterations, and salt of that record
|
|
as the ones we're going to use, and prune any
|
|
that don't match. */
|
|
|
|
for (i = 0; i < nsec_count; i++)
|
|
{
|
|
if (!(p = skip_name(nsecs[i], header, plen, 15)))
|
|
return STAT_BOGUS; /* bad packet */
|
|
|
|
p += 10; /* type, class, TTL, rdlen */
|
|
algo = *p++;
|
|
|
|
if (algo == 1)
|
|
break; /* known algo */
|
|
}
|
|
|
|
/* No usable NSEC3s */
|
|
if (i == nsec_count)
|
|
return STAT_BOGUS;
|
|
|
|
p++; /* flags */
|
|
GETSHORT (iterations, p);
|
|
salt_len = *p++;
|
|
salt = p;
|
|
if (!CHECK_LEN(header, salt, plen, salt_len))
|
|
return STAT_BOGUS; /* bad packet */
|
|
|
|
/* Now prune so we only have NSEC3 records with same iterations, salt and algo */
|
|
for (i = 0; i < nsec_count; i++)
|
|
{
|
|
unsigned char *nsec3p = nsecs[i];
|
|
int this_iter;
|
|
|
|
nsecs[i] = NULL; /* Speculative, will be restored if OK. */
|
|
|
|
if (!(p = skip_name(nsec3p, header, plen, 15)))
|
|
return STAT_BOGUS; /* bad packet */
|
|
|
|
p += 10; /* type, class, TTL, rdlen */
|
|
|
|
if (*p++ != algo)
|
|
continue;
|
|
|
|
p++; /* flags */
|
|
|
|
GETSHORT(this_iter, p);
|
|
if (this_iter != iterations)
|
|
continue;
|
|
|
|
if (salt_len != *p++)
|
|
continue;
|
|
|
|
if (!CHECK_LEN(header, p, plen, salt_len))
|
|
return STAT_BOGUS; /* bad packet */
|
|
|
|
if (memcmp(p, salt, salt_len) != 0)
|
|
continue;
|
|
|
|
/* All match, put the pointer back */
|
|
nsecs[i] = nsec3p;
|
|
}
|
|
|
|
/* Algo is checked as 1 above */
|
|
if (!(hash = hash_find("sha1")))
|
|
return STAT_BOGUS;
|
|
|
|
/* Now, we need the "closest encloser NSEC3" */
|
|
closest_encloser = name;
|
|
next_closest = NULL;
|
|
|
|
do
|
|
{
|
|
if (*closest_encloser == '.')
|
|
closest_encloser++;
|
|
|
|
if ((digest_len = hash_name(closest_encloser, &digest, hash, salt, salt_len, iterations)) == 0)
|
|
return STAT_BOGUS;
|
|
|
|
for (i = 0; i < nsec_count; i++)
|
|
if ((p = nsecs[i]))
|
|
{
|
|
if (!extract_name(header, plen, &p, workspace1, 1, 0) ||
|
|
!(base32_len = base32_decode(workspace1, (unsigned char *)workspace2)))
|
|
return STAT_BOGUS;
|
|
|
|
if (digest_len == base32_len &&
|
|
memcmp(digest, workspace2, digest_len) == 0)
|
|
break; /* Gotit */
|
|
}
|
|
|
|
if (i != nsec_count)
|
|
break;
|
|
|
|
next_closest = closest_encloser;
|
|
}
|
|
while ((closest_encloser = strchr(closest_encloser, '.')));
|
|
|
|
/* No usable NSEC3s */
|
|
if (i == nsec_count)
|
|
return STAT_BOGUS;
|
|
|
|
if (!next_closest)
|
|
{
|
|
/* We found an NSEC3 whose hashed name exactly matches the query, so
|
|
Now we just need to check the type map. p points to the RR data for the record. */
|
|
int rdlen;
|
|
unsigned char *psave;
|
|
int offset = (type & 0xff) >> 3;
|
|
int mask = 0x80 >> (type & 0x07);
|
|
|
|
p += 8; /* class, type, TTL */
|
|
GETSHORT(rdlen, p);
|
|
psave = p;
|
|
p += 5 + salt_len; /* algo, flags, iterations, salt_len, salt */
|
|
hash_len = *p++;
|
|
if (!CHECK_LEN(header, p, plen, hash_len))
|
|
return STAT_BOGUS; /* bad packet */
|
|
p += hash_len;
|
|
rdlen -= p - psave;
|
|
|
|
while (rdlen >= 2)
|
|
{
|
|
if (!CHECK_LEN(header, p, plen, rdlen))
|
|
return STAT_BOGUS;
|
|
|
|
if (p[0] == type >> 8)
|
|
{
|
|
/* Does the NSEC3 say our type exists? */
|
|
if (offset < p[1] && (p[offset+2] & mask) != 0)
|
|
return STAT_BOGUS;
|
|
|
|
break; /* finshed checking */
|
|
}
|
|
|
|
rdlen -= p[1];
|
|
p += p[1];
|
|
}
|
|
|
|
return STAT_SECURE;
|
|
}
|
|
|
|
/* Look for NSEC3 that proves the non-existence of the next-closest encloser */
|
|
if ((digest_len = hash_name(next_closest, &digest, hash, salt, salt_len, iterations)) == 0)
|
|
return STAT_BOGUS;
|
|
|
|
for (i = 0; i < nsec_count; i++)
|
|
if ((p = nsecs[i]))
|
|
{
|
|
if (!extract_name(header, plen, &p, workspace1, 1, 0) ||
|
|
!(base32_len = base32_decode(workspace1, (unsigned char *)workspace2)))
|
|
return STAT_BOGUS;
|
|
|
|
p += 15 + salt_len; /* class, type, TTL, rdlen, algo, flags, iterations, salt_len, salt */
|
|
hash_len = *p++; /* p now points to next hashed name */
|
|
|
|
if (!CHECK_LEN(header, p, plen, hash_len))
|
|
return STAT_BOGUS;
|
|
|
|
if (digest_len == base32_len && hash_len == base32_len)
|
|
{
|
|
if (memcmp(workspace2, digest, digest_len) <= 0)
|
|
{
|
|
/* Normal case, hash falls between NSEC3 name-hash and next domain name-hash,
|
|
wrap around case, name-hash falls between NSEC3 name-hash and end */
|
|
if (memcmp(p, digest, digest_len) > 0 || memcmp(workspace2, p, digest_len) > 0)
|
|
return STAT_SECURE;
|
|
}
|
|
else
|
|
{
|
|
/* wrap around case, name falls between start and next domain name */
|
|
if (memcmp(workspace2, p, digest_len) > 0 && memcmp(p, digest, digest_len) > 0)
|
|
return STAT_SECURE;
|
|
}
|
|
}
|
|
}
|
|
|
|
/* Finally, check that there's no seat of wildcard synthesis */
|
|
if (!(wildcard = strchr(next_closest, '.')) || wildcard == next_closest)
|
|
return STAT_BOGUS;
|
|
|
|
wildcard--;
|
|
*wildcard = '*';
|
|
|
|
if ((digest_len = hash_name(wildcard, &digest, hash, salt, salt_len, iterations)) == 0)
|
|
return STAT_BOGUS;
|
|
|
|
for (i = 0; i < nsec_count; i++)
|
|
if ((p = nsecs[i]))
|
|
{
|
|
if (!extract_name(header, plen, &p, workspace1, 1, 0) ||
|
|
!(base32_len = base32_decode(workspace1, (unsigned char *)workspace2)))
|
|
return STAT_BOGUS;
|
|
|
|
p += 15 + salt_len; /* class, type, TTL, rdlen, algo, flags, iterations, salt_len, salt */
|
|
hash_len = *p++; /* p now points to next hashed name */
|
|
|
|
if (!CHECK_LEN(header, p, plen, hash_len))
|
|
return STAT_BOGUS;
|
|
|
|
if (digest_len == base32_len && hash_len == base32_len)
|
|
{
|
|
if (memcmp(workspace2, digest, digest_len) <= 0)
|
|
{
|
|
/* Normal case, hash falls between NSEC3 name-hash and next domain name-hash,
|
|
wrap around case, name-hash falls between NSEC3 name-hash and end */
|
|
if (memcmp(p, digest, digest_len) > 0 || memcmp(workspace2, p, digest_len) > 0)
|
|
return STAT_SECURE;
|
|
}
|
|
else
|
|
{
|
|
/* wrap around case, name falls between start and next domain name */
|
|
if (memcmp(workspace2, p, digest_len) > 0 && memcmp(p, digest, digest_len) > 0)
|
|
return STAT_SECURE;
|
|
}
|
|
}
|
|
}
|
|
|
|
return STAT_BOGUS;
|
|
}
|
|
|
|
/* Validate all the RRsets in the answer and authority sections of the reply (4035:3.2.3) */
|
|
/* Returns are the same as validate_rrset, plus the class if the missing key is in *class */
|
|
int dnssec_validate_reply(time_t now, struct dns_header *header, size_t plen, char *name, char *keyname, int *class, int *neganswer)
|
|
{
|
|
unsigned char *ans_start, *qname, *p1, *p2, **nsecs;
|
|
int type1, class1, rdlen1, type2, class2, rdlen2, qclass, qtype;
|
|
int i, j, rc, nsec_count, cname_count = CNAME_CHAIN;
|
|
int nsec_type = 0, have_answer = 0;
|
|
|
|
if (neganswer)
|
|
*neganswer = 0;
|
|
|
|
if (RCODE(header) == SERVFAIL || ntohs(header->qdcount) != 1)
|
|
return STAT_BOGUS;
|
|
|
|
if (RCODE(header) != NXDOMAIN && RCODE(header) != NOERROR)
|
|
return STAT_INSECURE;
|
|
|
|
qname = p1 = (unsigned char *)(header+1);
|
|
|
|
if (!extract_name(header, plen, &p1, name, 1, 4))
|
|
return STAT_BOGUS;
|
|
|
|
GETSHORT(qtype, p1);
|
|
GETSHORT(qclass, p1);
|
|
ans_start = p1;
|
|
|
|
if (qtype == T_ANY)
|
|
have_answer = 1;
|
|
|
|
/* Can't validate an RRISG query */
|
|
if (qtype == T_RRSIG)
|
|
return STAT_INSECURE;
|
|
|
|
cname_loop:
|
|
for (j = ntohs(header->ancount); j != 0; j--)
|
|
{
|
|
/* leave pointer to missing name in qname */
|
|
|
|
if (!(rc = extract_name(header, plen, &p1, name, 0, 10)))
|
|
return STAT_BOGUS; /* bad packet */
|
|
|
|
GETSHORT(type2, p1);
|
|
GETSHORT(class2, p1);
|
|
p1 += 4; /* TTL */
|
|
GETSHORT(rdlen2, p1);
|
|
|
|
if (rc == 1 && qclass == class2)
|
|
{
|
|
/* Do we have an answer for the question? */
|
|
if (type2 == qtype)
|
|
{
|
|
have_answer = 1;
|
|
break;
|
|
}
|
|
else if (type2 == T_CNAME)
|
|
{
|
|
qname = p1;
|
|
|
|
/* looped CNAMES */
|
|
if (!cname_count-- || !extract_name(header, plen, &p1, name, 1, 0))
|
|
return STAT_BOGUS;
|
|
|
|
p1 = ans_start;
|
|
goto cname_loop;
|
|
}
|
|
}
|
|
|
|
if (!ADD_RDLEN(header, p1, plen, rdlen2))
|
|
return STAT_BOGUS;
|
|
}
|
|
|
|
if (neganswer && !have_answer)
|
|
*neganswer = 1;
|
|
|
|
/* No data, therefore no sigs */
|
|
if (ntohs(header->ancount) + ntohs(header->nscount) == 0)
|
|
return STAT_NO_SIG;
|
|
|
|
for (p1 = ans_start, i = 0; i < ntohs(header->ancount) + ntohs(header->nscount); i++)
|
|
{
|
|
if (!extract_name(header, plen, &p1, name, 1, 10))
|
|
return STAT_BOGUS; /* bad packet */
|
|
|
|
GETSHORT(type1, p1);
|
|
GETSHORT(class1, p1);
|
|
p1 += 4; /* TTL */
|
|
GETSHORT(rdlen1, p1);
|
|
|
|
/* Don't try and validate RRSIGs! */
|
|
if (type1 != T_RRSIG)
|
|
{
|
|
/* Check if we've done this RRset already */
|
|
for (p2 = ans_start, j = 0; j < i; j++)
|
|
{
|
|
if (!(rc = extract_name(header, plen, &p2, name, 0, 10)))
|
|
return STAT_BOGUS; /* bad packet */
|
|
|
|
GETSHORT(type2, p2);
|
|
GETSHORT(class2, p2);
|
|
p2 += 4; /* TTL */
|
|
GETSHORT(rdlen2, p2);
|
|
|
|
if (type2 == type1 && class2 == class1 && rc == 1)
|
|
break; /* Done it before: name, type, class all match. */
|
|
|
|
if (!ADD_RDLEN(header, p2, plen, rdlen2))
|
|
return STAT_BOGUS;
|
|
}
|
|
|
|
/* Not done, validate now */
|
|
if (j == i)
|
|
{
|
|
int ttl, keytag, algo, digest, type_covered;
|
|
unsigned char *psave;
|
|
struct all_addr a;
|
|
struct blockdata *key;
|
|
struct crec *crecp;
|
|
|
|
rc = validate_rrset(now, header, plen, class1, type1, name, keyname, NULL, 0, 0, 0);
|
|
|
|
if (rc == STAT_SECURE_WILDCARD)
|
|
{
|
|
/* An attacker replay a wildcard answer with a different
|
|
answer and overlay a genuine RR. To prove this
|
|
hasn't happened, the answer must prove that
|
|
the gennuine record doesn't exist. Check that here. */
|
|
if (!nsec_type && !(nsec_type = find_nsec_records(header, plen, &nsecs, &nsec_count, class1)))
|
|
return STAT_BOGUS; /* No NSECs or bad packet */
|
|
|
|
if (nsec_type == T_NSEC)
|
|
rc = prove_non_existence_nsec(header, plen, nsecs, nsec_count, daemon->workspacename, keyname, name, type1);
|
|
else
|
|
rc = prove_non_existence_nsec3(header, plen, nsecs, nsec_count, daemon->workspacename, keyname, name, type1);
|
|
|
|
if (rc != STAT_SECURE)
|
|
return rc;
|
|
}
|
|
else if (rc != STAT_SECURE)
|
|
{
|
|
if (class)
|
|
*class = class1; /* Class for DS or DNSKEY */
|
|
return rc;
|
|
}
|
|
|
|
/* Cache RRsigs in answer section, and if we just validated a DS RRset, cache it */
|
|
cache_start_insert();
|
|
|
|
for (p2 = ans_start, j = 0; j < ntohs(header->ancount); j++)
|
|
{
|
|
if (!(rc = extract_name(header, plen, &p2, name, 0, 10)))
|
|
return STAT_BOGUS; /* bad packet */
|
|
|
|
GETSHORT(type2, p2);
|
|
GETSHORT(class2, p2);
|
|
GETLONG(ttl, p2);
|
|
GETSHORT(rdlen2, p2);
|
|
|
|
if (!CHECK_LEN(header, p2, plen, rdlen2))
|
|
return STAT_BOGUS; /* bad packet */
|
|
|
|
if (class2 == class1 && rc == 1)
|
|
{
|
|
psave = p2;
|
|
|
|
if (type1 == T_DS && type2 == T_DS)
|
|
{
|
|
if (rdlen2 < 4)
|
|
return STAT_BOGUS; /* bad packet */
|
|
|
|
GETSHORT(keytag, p2);
|
|
algo = *p2++;
|
|
digest = *p2++;
|
|
|
|
/* Cache needs to known class for DNSSEC stuff */
|
|
a.addr.dnssec.class = class2;
|
|
|
|
if ((key = blockdata_alloc((char*)p2, rdlen2 - 4)))
|
|
{
|
|
if (!(crecp = cache_insert(name, &a, now, ttl, F_FORWARD | F_DS | F_DNSSECOK)))
|
|
blockdata_free(key);
|
|
else
|
|
{
|
|
a.addr.keytag = keytag;
|
|
log_query(F_KEYTAG | F_UPSTREAM, name, &a, "DS keytag %u");
|
|
crecp->addr.ds.digest = digest;
|
|
crecp->addr.ds.keydata = key;
|
|
crecp->addr.ds.algo = algo;
|
|
crecp->addr.ds.keytag = keytag;
|
|
crecp->addr.ds.keylen = rdlen2 - 4;
|
|
}
|
|
}
|
|
}
|
|
else if (type2 == T_RRSIG)
|
|
{
|
|
if (rdlen2 < 18)
|
|
return STAT_BOGUS; /* bad packet */
|
|
|
|
GETSHORT(type_covered, p2);
|
|
|
|
if (type_covered == type1 &&
|
|
(type_covered == T_A || type_covered == T_AAAA ||
|
|
type_covered == T_CNAME || type_covered == T_DS ||
|
|
type_covered == T_DNSKEY || type_covered == T_PTR))
|
|
{
|
|
a.addr.dnssec.type = type_covered;
|
|
a.addr.dnssec.class = class1;
|
|
|
|
algo = *p2++;
|
|
p2 += 13; /* labels, orig_ttl, expiration, inception */
|
|
GETSHORT(keytag, p2);
|
|
|
|
if ((key = blockdata_alloc((char*)psave, rdlen2)))
|
|
{
|
|
if (!(crecp = cache_insert(name, &a, now, ttl, F_FORWARD | F_DNSKEY | F_DS)))
|
|
blockdata_free(key);
|
|
else
|
|
{
|
|
crecp->addr.sig.keydata = key;
|
|
crecp->addr.sig.keylen = rdlen2;
|
|
crecp->addr.sig.keytag = keytag;
|
|
crecp->addr.sig.type_covered = type_covered;
|
|
crecp->addr.sig.algo = algo;
|
|
}
|
|
}
|
|
}
|
|
}
|
|
|
|
p2 = psave;
|
|
}
|
|
|
|
if (!ADD_RDLEN(header, p2, plen, rdlen2))
|
|
return STAT_BOGUS; /* bad packet */
|
|
}
|
|
|
|
cache_end_insert();
|
|
}
|
|
}
|
|
|
|
if (!ADD_RDLEN(header, p1, plen, rdlen1))
|
|
return STAT_BOGUS;
|
|
}
|
|
|
|
/* OK, all the RRsets validate, now see if we have a NODATA or NXDOMAIN reply */
|
|
if (have_answer)
|
|
return STAT_SECURE;
|
|
|
|
/* NXDOMAIN or NODATA reply, prove that (name, class1, type1) can't exist */
|
|
/* First marshall the NSEC records, if we've not done it previously */
|
|
if (!nsec_type && !(nsec_type = find_nsec_records(header, plen, &nsecs, &nsec_count, qclass)))
|
|
return STAT_BOGUS; /* No NSECs */
|
|
|
|
/* Get name of missing answer */
|
|
if (!extract_name(header, plen, &qname, name, 1, 0))
|
|
return STAT_BOGUS;
|
|
|
|
if (nsec_type == T_NSEC)
|
|
return prove_non_existence_nsec(header, plen, nsecs, nsec_count, daemon->workspacename, keyname, name, qtype);
|
|
else
|
|
return prove_non_existence_nsec3(header, plen, nsecs, nsec_count, daemon->workspacename, keyname, name, qtype);
|
|
}
|
|
|
|
/* Chase the CNAME chain in the packet until the first record which _doesn't validate.
|
|
Needed for proving answer in unsigned space.
|
|
Return STAT_NEED_*
|
|
STAT_BOGUS - error
|
|
STAT_INSECURE - name of first non-secure record in name
|
|
*/
|
|
int dnssec_chase_cname(time_t now, struct dns_header *header, size_t plen, char *name, char *keyname)
|
|
{
|
|
unsigned char *p = (unsigned char *)(header+1);
|
|
int type, class, qclass, rdlen, j, rc;
|
|
int cname_count = CNAME_CHAIN;
|
|
|
|
/* Get question */
|
|
if (!extract_name(header, plen, &p, name, 1, 4))
|
|
return STAT_BOGUS;
|
|
|
|
p +=2; /* type */
|
|
GETSHORT(qclass, p);
|
|
|
|
while (1)
|
|
{
|
|
for (j = ntohs(header->ancount); j != 0; j--)
|
|
{
|
|
if (!(rc = extract_name(header, plen, &p, name, 0, 10)))
|
|
return STAT_BOGUS; /* bad packet */
|
|
|
|
GETSHORT(type, p);
|
|
GETSHORT(class, p);
|
|
p += 4; /* TTL */
|
|
GETSHORT(rdlen, p);
|
|
|
|
/* Not target, loop */
|
|
if (rc == 2 || qclass != class)
|
|
{
|
|
if (!ADD_RDLEN(header, p, plen, rdlen))
|
|
return STAT_BOGUS;
|
|
continue;
|
|
}
|
|
|
|
/* Got to end of CNAME chain. */
|
|
if (type != T_CNAME)
|
|
return STAT_INSECURE;
|
|
|
|
/* validate CNAME chain, return if insecure or need more data */
|
|
rc = validate_rrset(now, header, plen, class, type, name, keyname, NULL, 0, 0, 0);
|
|
if (rc != STAT_SECURE)
|
|
{
|
|
if (rc == STAT_NO_SIG)
|
|
rc = STAT_INSECURE;
|
|
return rc;
|
|
}
|
|
|
|
/* Loop down CNAME chain/ */
|
|
if (!cname_count-- ||
|
|
!extract_name(header, plen, &p, name, 1, 0) ||
|
|
!(p = skip_questions(header, plen)))
|
|
return STAT_BOGUS;
|
|
|
|
break;
|
|
}
|
|
|
|
/* End of CNAME chain */
|
|
return STAT_INSECURE;
|
|
}
|
|
}
|
|
|
|
|
|
/* Compute keytag (checksum to quickly index a key). See RFC4034 */
|
|
int dnskey_keytag(int alg, int flags, unsigned char *key, int keylen)
|
|
{
|
|
if (alg == 1)
|
|
{
|
|
/* Algorithm 1 (RSAMD5) has a different (older) keytag calculation algorithm.
|
|
See RFC4034, Appendix B.1 */
|
|
return key[keylen-4] * 256 + key[keylen-3];
|
|
}
|
|
else
|
|
{
|
|
unsigned long ac = flags + 0x300 + alg;
|
|
int i;
|
|
|
|
for (i = 0; i < keylen; ++i)
|
|
ac += (i & 1) ? key[i] : key[i] << 8;
|
|
|
|
ac += (ac >> 16) & 0xffff;
|
|
return ac & 0xffff;
|
|
}
|
|
}
|
|
|
|
size_t dnssec_generate_query(struct dns_header *header, char *end, char *name, int class, int type, union mysockaddr *addr)
|
|
{
|
|
unsigned char *p;
|
|
char *types = querystr("dnssec-query", type);
|
|
|
|
if (addr->sa.sa_family == AF_INET)
|
|
log_query(F_DNSSEC | F_IPV4, name, (struct all_addr *)&addr->in.sin_addr, types);
|
|
#ifdef HAVE_IPV6
|
|
else
|
|
log_query(F_DNSSEC | F_IPV6, name, (struct all_addr *)&addr->in6.sin6_addr, types);
|
|
#endif
|
|
|
|
header->qdcount = htons(1);
|
|
header->ancount = htons(0);
|
|
header->nscount = htons(0);
|
|
header->arcount = htons(0);
|
|
|
|
header->hb3 = HB3_RD;
|
|
SET_OPCODE(header, QUERY);
|
|
/* For debugging, set Checking Disabled, otherwise, have the upstream check too,
|
|
this allows it to select auth servers when one is returning bad data. */
|
|
header->hb4 = option_bool(OPT_DNSSEC_DEBUG) ? HB4_CD : 0;
|
|
|
|
/* ID filled in later */
|
|
|
|
p = (unsigned char *)(header+1);
|
|
|
|
p = do_rfc1035_name(p, name);
|
|
*p++ = 0;
|
|
PUTSHORT(type, p);
|
|
PUTSHORT(class, p);
|
|
|
|
return add_do_bit(header, p - (unsigned char *)header, end);
|
|
}
|
|
|
|
/* Go through a domain name, find "pointers" and fix them up based on how many bytes
|
|
we've chopped out of the packet, or check they don't point into an elided part. */
|
|
static int check_name(unsigned char **namep, struct dns_header *header, size_t plen, int fixup, unsigned char **rrs, int rr_count)
|
|
{
|
|
unsigned char *ansp = *namep;
|
|
|
|
while(1)
|
|
{
|
|
unsigned int label_type;
|
|
|
|
if (!CHECK_LEN(header, ansp, plen, 1))
|
|
return 0;
|
|
|
|
label_type = (*ansp) & 0xc0;
|
|
|
|
if (label_type == 0xc0)
|
|
{
|
|
/* pointer for compression. */
|
|
unsigned int offset;
|
|
int i;
|
|
unsigned char *p;
|
|
|
|
if (!CHECK_LEN(header, ansp, plen, 2))
|
|
return 0;
|
|
|
|
offset = ((*ansp++) & 0x3f) << 8;
|
|
offset |= *ansp++;
|
|
|
|
p = offset + (unsigned char *)header;
|
|
|
|
for (i = 0; i < rr_count; i++)
|
|
if (p < rrs[i])
|
|
break;
|
|
else
|
|
if (i & 1)
|
|
offset -= rrs[i] - rrs[i-1];
|
|
|
|
/* does the pointer end up in an elided RR? */
|
|
if (i & 1)
|
|
return 0;
|
|
|
|
/* No, scale the pointer */
|
|
if (fixup)
|
|
{
|
|
ansp -= 2;
|
|
*ansp++ = (offset >> 8) | 0xc0;
|
|
*ansp++ = offset & 0xff;
|
|
}
|
|
break;
|
|
}
|
|
else if (label_type == 0x80)
|
|
return 0; /* reserved */
|
|
else if (label_type == 0x40)
|
|
{
|
|
/* Extended label type */
|
|
unsigned int count;
|
|
|
|
if (!CHECK_LEN(header, ansp, plen, 2))
|
|
return 0;
|
|
|
|
if (((*ansp++) & 0x3f) != 1)
|
|
return 0; /* we only understand bitstrings */
|
|
|
|
count = *(ansp++); /* Bits in bitstring */
|
|
|
|
if (count == 0) /* count == 0 means 256 bits */
|
|
ansp += 32;
|
|
else
|
|
ansp += ((count-1)>>3)+1;
|
|
}
|
|
else
|
|
{ /* label type == 0 Bottom six bits is length */
|
|
unsigned int len = (*ansp++) & 0x3f;
|
|
|
|
if (!ADD_RDLEN(header, ansp, plen, len))
|
|
return 0;
|
|
|
|
if (len == 0)
|
|
break; /* zero length label marks the end. */
|
|
}
|
|
}
|
|
|
|
*namep = ansp;
|
|
|
|
return 1;
|
|
}
|
|
|
|
/* Go through RRs and check or fixup the domain names contained within */
|
|
static int check_rrs(unsigned char *p, struct dns_header *header, size_t plen, int fixup, unsigned char **rrs, int rr_count)
|
|
{
|
|
int i, type, class, rdlen;
|
|
unsigned char *pp;
|
|
|
|
for (i = 0; i < ntohs(header->ancount) + ntohs(header->nscount) + ntohs(header->arcount); i++)
|
|
{
|
|
pp = p;
|
|
|
|
if (!(p = skip_name(p, header, plen, 10)))
|
|
return 0;
|
|
|
|
GETSHORT(type, p);
|
|
GETSHORT(class, p);
|
|
p += 4; /* TTL */
|
|
GETSHORT(rdlen, p);
|
|
|
|
if (type != T_NSEC && type != T_NSEC3 && type != T_RRSIG)
|
|
{
|
|
/* fixup name of RR */
|
|
if (!check_name(&pp, header, plen, fixup, rrs, rr_count))
|
|
return 0;
|
|
|
|
if (class == C_IN)
|
|
{
|
|
u16 *d;
|
|
|
|
for (pp = p, d = get_desc(type); *d != (u16)-1; d++)
|
|
{
|
|
if (*d != 0)
|
|
pp += *d;
|
|
else if (!check_name(&pp, header, plen, fixup, rrs, rr_count))
|
|
return 0;
|
|
}
|
|
}
|
|
}
|
|
|
|
if (!ADD_RDLEN(header, p, plen, rdlen))
|
|
return 0;
|
|
}
|
|
|
|
return 1;
|
|
}
|
|
|
|
|
|
size_t filter_rrsigs(struct dns_header *header, size_t plen)
|
|
{
|
|
static unsigned char **rrs;
|
|
static int rr_sz = 0;
|
|
|
|
unsigned char *p = (unsigned char *)(header+1);
|
|
int i, rdlen, qtype, qclass, rr_found, chop_an, chop_ns, chop_ar;
|
|
|
|
if (ntohs(header->qdcount) != 1 ||
|
|
!(p = skip_name(p, header, plen, 4)))
|
|
return plen;
|
|
|
|
GETSHORT(qtype, p);
|
|
GETSHORT(qclass, p);
|
|
|
|
/* First pass, find pointers to start and end of all the records we wish to elide:
|
|
records added for DNSSEC, unless explicity queried for */
|
|
for (rr_found = 0, chop_ns = 0, chop_an = 0, chop_ar = 0, i = 0;
|
|
i < ntohs(header->ancount) + ntohs(header->nscount) + ntohs(header->arcount);
|
|
i++)
|
|
{
|
|
unsigned char *pstart = p;
|
|
int type, class;
|
|
|
|
if (!(p = skip_name(p, header, plen, 10)))
|
|
return plen;
|
|
|
|
GETSHORT(type, p);
|
|
GETSHORT(class, p);
|
|
p += 4; /* TTL */
|
|
GETSHORT(rdlen, p);
|
|
|
|
if ((type == T_NSEC || type == T_NSEC3 || type == T_RRSIG) &&
|
|
(type != qtype || class != qclass))
|
|
{
|
|
if (!expand_workspace(&rrs, &rr_sz, rr_found + 1))
|
|
return plen;
|
|
|
|
rrs[rr_found++] = pstart;
|
|
|
|
if (!ADD_RDLEN(header, p, plen, rdlen))
|
|
return plen;
|
|
|
|
rrs[rr_found++] = p;
|
|
|
|
if (i < ntohs(header->ancount))
|
|
chop_an++;
|
|
else if (i < (ntohs(header->nscount) + ntohs(header->ancount)))
|
|
chop_ns++;
|
|
else
|
|
chop_ar++;
|
|
}
|
|
else if (!ADD_RDLEN(header, p, plen, rdlen))
|
|
return plen;
|
|
}
|
|
|
|
/* Nothing to do. */
|
|
if (rr_found == 0)
|
|
return plen;
|
|
|
|
/* Second pass, look for pointers in names in the records we're keeping and make sure they don't
|
|
point to records we're going to elide. This is theoretically possible, but unlikely. If
|
|
it happens, we give up and leave the answer unchanged. */
|
|
p = (unsigned char *)(header+1);
|
|
|
|
/* question first */
|
|
if (!check_name(&p, header, plen, 0, rrs, rr_found))
|
|
return plen;
|
|
p += 4; /* qclass, qtype */
|
|
|
|
/* Now answers and NS */
|
|
if (!check_rrs(p, header, plen, 0, rrs, rr_found))
|
|
return plen;
|
|
|
|
/* Third pass, elide records */
|
|
for (p = rrs[0], i = 1; i < rr_found; i += 2)
|
|
{
|
|
unsigned char *start = rrs[i];
|
|
unsigned char *end = (i != rr_found - 1) ? rrs[i+1] : ((unsigned char *)(header+1)) + plen;
|
|
|
|
memmove(p, start, end-start);
|
|
p += end-start;
|
|
}
|
|
|
|
plen = p - (unsigned char *)header;
|
|
header->ancount = htons(ntohs(header->ancount) - chop_an);
|
|
header->nscount = htons(ntohs(header->nscount) - chop_ns);
|
|
header->arcount = htons(ntohs(header->arcount) - chop_ar);
|
|
|
|
/* Fourth pass, fix up pointers in the remaining records */
|
|
p = (unsigned char *)(header+1);
|
|
|
|
check_name(&p, header, plen, 1, rrs, rr_found);
|
|
p += 4; /* qclass, qtype */
|
|
|
|
check_rrs(p, header, plen, 1, rrs, rr_found);
|
|
|
|
return plen;
|
|
}
|
|
|
|
unsigned char* hash_questions(struct dns_header *header, size_t plen, char *name)
|
|
{
|
|
int q;
|
|
unsigned int len;
|
|
unsigned char *p = (unsigned char *)(header+1);
|
|
const struct nettle_hash *hash;
|
|
void *ctx;
|
|
unsigned char *digest;
|
|
|
|
if (!(hash = hash_find("sha1")) || !hash_init(hash, &ctx, &digest))
|
|
return NULL;
|
|
|
|
for (q = ntohs(header->qdcount); q != 0; q--)
|
|
{
|
|
if (!extract_name(header, plen, &p, name, 1, 4))
|
|
break; /* bad packet */
|
|
|
|
len = to_wire(name);
|
|
hash->update(ctx, len, (unsigned char *)name);
|
|
/* CRC the class and type as well */
|
|
hash->update(ctx, 4, p);
|
|
|
|
p += 4;
|
|
if (!CHECK_LEN(header, p, plen, 0))
|
|
break; /* bad packet */
|
|
}
|
|
|
|
hash->digest(ctx, hash->digest_size, digest);
|
|
return digest;
|
|
}
|
|
|
|
#endif /* HAVE_DNSSEC */
|