mirror of
https://github.com/pi-hole/dnsmasq.git
synced 2025-12-19 10:18:25 +00:00
2250 lines
60 KiB
C
2250 lines
60 KiB
C
/* dnssec.c is Copyright (c) 2012 Giovanni Bajo <rasky@develer.com>
|
|
and Copyright (c) 2012-2016 Simon Kelley
|
|
|
|
This program is free software; you can redistribute it and/or modify
|
|
it under the terms of the GNU General Public License as published by
|
|
the Free Software Foundation; version 2 dated June, 1991, or
|
|
(at your option) version 3 dated 29 June, 2007.
|
|
|
|
This program is distributed in the hope that it will be useful,
|
|
but WITHOUT ANY WARRANTY; without even the implied warranty of
|
|
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
|
|
GNU General Public License for more details.
|
|
|
|
You should have received a copy of the GNU General Public License
|
|
along with this program. If not, see <http://www.gnu.org/licenses/>.
|
|
*/
|
|
|
|
#include "dnsmasq.h"
|
|
|
|
#ifdef HAVE_DNSSEC
|
|
|
|
#include <nettle/rsa.h>
|
|
#include <nettle/dsa.h>
|
|
#ifndef NO_NETTLE_ECC
|
|
# include <nettle/ecdsa.h>
|
|
# include <nettle/ecc-curve.h>
|
|
#endif
|
|
#include <nettle/nettle-meta.h>
|
|
#include <nettle/bignum.h>
|
|
|
|
/* Nettle-3.0 moved to a new API for DSA. We use a name that's defined in the new API
|
|
to detect Nettle-3, and invoke the backwards compatibility mode. */
|
|
#ifdef dsa_params_init
|
|
#include <nettle/dsa-compat.h>
|
|
#endif
|
|
|
|
#define SERIAL_UNDEF -100
|
|
#define SERIAL_EQ 0
|
|
#define SERIAL_LT -1
|
|
#define SERIAL_GT 1
|
|
|
|
/* http://www.iana.org/assignments/ds-rr-types/ds-rr-types.xhtml */
|
|
static char *ds_digest_name(int digest)
|
|
{
|
|
switch (digest)
|
|
{
|
|
case 1: return "sha1";
|
|
case 2: return "sha256";
|
|
case 3: return "gosthash94";
|
|
case 4: return "sha384";
|
|
default: return NULL;
|
|
}
|
|
}
|
|
|
|
/* http://www.iana.org/assignments/dns-sec-alg-numbers/dns-sec-alg-numbers.xhtml */
|
|
static char *algo_digest_name(int algo)
|
|
{
|
|
switch (algo)
|
|
{
|
|
case 1: return "md5";
|
|
case 3: return "sha1";
|
|
case 5: return "sha1";
|
|
case 6: return "sha1";
|
|
case 7: return "sha1";
|
|
case 8: return "sha256";
|
|
case 10: return "sha512";
|
|
case 12: return "gosthash94";
|
|
case 13: return "sha256";
|
|
case 14: return "sha384";
|
|
default: return NULL;
|
|
}
|
|
}
|
|
|
|
/* http://www.iana.org/assignments/dnssec-nsec3-parameters/dnssec-nsec3-parameters.xhtml */
|
|
static char *nsec3_digest_name(int digest)
|
|
{
|
|
switch (digest)
|
|
{
|
|
case 1: return "sha1";
|
|
default: return NULL;
|
|
}
|
|
}
|
|
|
|
/* Find pointer to correct hash function in nettle library */
|
|
static const struct nettle_hash *hash_find(char *name)
|
|
{
|
|
int i;
|
|
|
|
if (!name)
|
|
return NULL;
|
|
|
|
for (i = 0; nettle_hashes[i]; i++)
|
|
{
|
|
if (strcmp(nettle_hashes[i]->name, name) == 0)
|
|
return nettle_hashes[i];
|
|
}
|
|
|
|
return NULL;
|
|
}
|
|
|
|
/* expand ctx and digest memory allocations if necessary and init hash function */
|
|
static int hash_init(const struct nettle_hash *hash, void **ctxp, unsigned char **digestp)
|
|
{
|
|
static void *ctx = NULL;
|
|
static unsigned char *digest = NULL;
|
|
static unsigned int ctx_sz = 0;
|
|
static unsigned int digest_sz = 0;
|
|
|
|
void *new;
|
|
|
|
if (ctx_sz < hash->context_size)
|
|
{
|
|
if (!(new = whine_malloc(hash->context_size)))
|
|
return 0;
|
|
if (ctx)
|
|
free(ctx);
|
|
ctx = new;
|
|
ctx_sz = hash->context_size;
|
|
}
|
|
|
|
if (digest_sz < hash->digest_size)
|
|
{
|
|
if (!(new = whine_malloc(hash->digest_size)))
|
|
return 0;
|
|
if (digest)
|
|
free(digest);
|
|
digest = new;
|
|
digest_sz = hash->digest_size;
|
|
}
|
|
|
|
*ctxp = ctx;
|
|
*digestp = digest;
|
|
|
|
hash->init(ctx);
|
|
|
|
return 1;
|
|
}
|
|
|
|
static int dnsmasq_rsa_verify(struct blockdata *key_data, unsigned int key_len, unsigned char *sig, size_t sig_len,
|
|
unsigned char *digest, size_t digest_len, int algo)
|
|
{
|
|
unsigned char *p;
|
|
size_t exp_len;
|
|
|
|
static struct rsa_public_key *key = NULL;
|
|
static mpz_t sig_mpz;
|
|
|
|
(void)digest_len;
|
|
|
|
if (key == NULL)
|
|
{
|
|
if (!(key = whine_malloc(sizeof(struct rsa_public_key))))
|
|
return 0;
|
|
|
|
nettle_rsa_public_key_init(key);
|
|
mpz_init(sig_mpz);
|
|
}
|
|
|
|
if ((key_len < 3) || !(p = blockdata_retrieve(key_data, key_len, NULL)))
|
|
return 0;
|
|
|
|
key_len--;
|
|
if ((exp_len = *p++) == 0)
|
|
{
|
|
GETSHORT(exp_len, p);
|
|
key_len -= 2;
|
|
}
|
|
|
|
if (exp_len >= key_len)
|
|
return 0;
|
|
|
|
key->size = key_len - exp_len;
|
|
mpz_import(key->e, exp_len, 1, 1, 0, 0, p);
|
|
mpz_import(key->n, key->size, 1, 1, 0, 0, p + exp_len);
|
|
|
|
mpz_import(sig_mpz, sig_len, 1, 1, 0, 0, sig);
|
|
|
|
switch (algo)
|
|
{
|
|
case 1:
|
|
return nettle_rsa_md5_verify_digest(key, digest, sig_mpz);
|
|
case 5: case 7:
|
|
return nettle_rsa_sha1_verify_digest(key, digest, sig_mpz);
|
|
case 8:
|
|
return nettle_rsa_sha256_verify_digest(key, digest, sig_mpz);
|
|
case 10:
|
|
return nettle_rsa_sha512_verify_digest(key, digest, sig_mpz);
|
|
}
|
|
|
|
return 0;
|
|
}
|
|
|
|
static int dnsmasq_dsa_verify(struct blockdata *key_data, unsigned int key_len, unsigned char *sig, size_t sig_len,
|
|
unsigned char *digest, size_t digest_len, int algo)
|
|
{
|
|
unsigned char *p;
|
|
unsigned int t;
|
|
|
|
static struct dsa_public_key *key = NULL;
|
|
static struct dsa_signature *sig_struct;
|
|
|
|
(void)digest_len;
|
|
|
|
if (key == NULL)
|
|
{
|
|
if (!(sig_struct = whine_malloc(sizeof(struct dsa_signature))) ||
|
|
!(key = whine_malloc(sizeof(struct dsa_public_key))))
|
|
return 0;
|
|
|
|
nettle_dsa_public_key_init(key);
|
|
nettle_dsa_signature_init(sig_struct);
|
|
}
|
|
|
|
if ((sig_len < 41) || !(p = blockdata_retrieve(key_data, key_len, NULL)))
|
|
return 0;
|
|
|
|
t = *p++;
|
|
|
|
if (key_len < (213 + (t * 24)))
|
|
return 0;
|
|
|
|
mpz_import(key->q, 20, 1, 1, 0, 0, p); p += 20;
|
|
mpz_import(key->p, 64 + (t*8), 1, 1, 0, 0, p); p += 64 + (t*8);
|
|
mpz_import(key->g, 64 + (t*8), 1, 1, 0, 0, p); p += 64 + (t*8);
|
|
mpz_import(key->y, 64 + (t*8), 1, 1, 0, 0, p); p += 64 + (t*8);
|
|
|
|
mpz_import(sig_struct->r, 20, 1, 1, 0, 0, sig+1);
|
|
mpz_import(sig_struct->s, 20, 1, 1, 0, 0, sig+21);
|
|
|
|
(void)algo;
|
|
|
|
return nettle_dsa_sha1_verify_digest(key, digest, sig_struct);
|
|
}
|
|
|
|
#ifndef NO_NETTLE_ECC
|
|
static int dnsmasq_ecdsa_verify(struct blockdata *key_data, unsigned int key_len,
|
|
unsigned char *sig, size_t sig_len,
|
|
unsigned char *digest, size_t digest_len, int algo)
|
|
{
|
|
unsigned char *p;
|
|
unsigned int t;
|
|
struct ecc_point *key;
|
|
|
|
static struct ecc_point *key_256 = NULL, *key_384 = NULL;
|
|
static mpz_t x, y;
|
|
static struct dsa_signature *sig_struct;
|
|
|
|
if (!sig_struct)
|
|
{
|
|
if (!(sig_struct = whine_malloc(sizeof(struct dsa_signature))))
|
|
return 0;
|
|
|
|
nettle_dsa_signature_init(sig_struct);
|
|
mpz_init(x);
|
|
mpz_init(y);
|
|
}
|
|
|
|
switch (algo)
|
|
{
|
|
case 13:
|
|
if (!key_256)
|
|
{
|
|
if (!(key_256 = whine_malloc(sizeof(struct ecc_point))))
|
|
return 0;
|
|
|
|
nettle_ecc_point_init(key_256, &nettle_secp_256r1);
|
|
}
|
|
|
|
key = key_256;
|
|
t = 32;
|
|
break;
|
|
|
|
case 14:
|
|
if (!key_384)
|
|
{
|
|
if (!(key_384 = whine_malloc(sizeof(struct ecc_point))))
|
|
return 0;
|
|
|
|
nettle_ecc_point_init(key_384, &nettle_secp_384r1);
|
|
}
|
|
|
|
key = key_384;
|
|
t = 48;
|
|
break;
|
|
|
|
default:
|
|
return 0;
|
|
}
|
|
|
|
if (sig_len != 2*t || key_len != 2*t ||
|
|
!(p = blockdata_retrieve(key_data, key_len, NULL)))
|
|
return 0;
|
|
|
|
mpz_import(x, t , 1, 1, 0, 0, p);
|
|
mpz_import(y, t , 1, 1, 0, 0, p + t);
|
|
|
|
if (!ecc_point_set(key, x, y))
|
|
return 0;
|
|
|
|
mpz_import(sig_struct->r, t, 1, 1, 0, 0, sig);
|
|
mpz_import(sig_struct->s, t, 1, 1, 0, 0, sig + t);
|
|
|
|
return nettle_ecdsa_verify(key, digest_len, digest, sig_struct);
|
|
}
|
|
#endif
|
|
|
|
static int (*verify_func(int algo))(struct blockdata *key_data, unsigned int key_len, unsigned char *sig, size_t sig_len,
|
|
unsigned char *digest, size_t digest_len, int algo)
|
|
{
|
|
|
|
/* Enure at runtime that we have support for this digest */
|
|
if (!hash_find(algo_digest_name(algo)))
|
|
return NULL;
|
|
|
|
/* This switch defines which sig algorithms we support, can't introspect Nettle for that. */
|
|
switch (algo)
|
|
{
|
|
case 1: case 5: case 7: case 8: case 10:
|
|
return dnsmasq_rsa_verify;
|
|
|
|
case 3: case 6:
|
|
return dnsmasq_dsa_verify;
|
|
|
|
#ifndef NO_NETTLE_ECC
|
|
case 13: case 14:
|
|
return dnsmasq_ecdsa_verify;
|
|
#endif
|
|
}
|
|
|
|
return NULL;
|
|
}
|
|
|
|
static int verify(struct blockdata *key_data, unsigned int key_len, unsigned char *sig, size_t sig_len,
|
|
unsigned char *digest, size_t digest_len, int algo)
|
|
{
|
|
|
|
int (*func)(struct blockdata *key_data, unsigned int key_len, unsigned char *sig, size_t sig_len,
|
|
unsigned char *digest, size_t digest_len, int algo);
|
|
|
|
func = verify_func(algo);
|
|
|
|
if (!func)
|
|
return 0;
|
|
|
|
return (*func)(key_data, key_len, sig, sig_len, digest, digest_len, algo);
|
|
}
|
|
|
|
/* Convert from presentation format to wire format, in place.
|
|
Also map UC -> LC.
|
|
Note that using extract_name to get presentation format
|
|
then calling to_wire() removes compression and maps case,
|
|
thus generating names in canonical form.
|
|
Calling to_wire followed by from_wire is almost an identity,
|
|
except that the UC remains mapped to LC.
|
|
|
|
Note that both /000 and '.' are allowed within labels. These get
|
|
represented in presentation format using NAME_ESCAPE as an escape
|
|
character. In theory, if all the characters in a name were /000 or
|
|
'.' or NAME_ESCAPE then all would have to be escaped, so the
|
|
presentation format would be twice as long as the spec (1024).
|
|
The buffers are all delcared as 2049 (allowing for the trailing zero)
|
|
for this reason.
|
|
*/
|
|
static int to_wire(char *name)
|
|
{
|
|
unsigned char *l, *p, *q, term;
|
|
int len;
|
|
|
|
for (l = (unsigned char*)name; *l != 0; l = p)
|
|
{
|
|
for (p = l; *p != '.' && *p != 0; p++)
|
|
if (*p >= 'A' && *p <= 'Z')
|
|
*p = *p - 'A' + 'a';
|
|
else if (*p == NAME_ESCAPE)
|
|
{
|
|
for (q = p; *q; q++)
|
|
*q = *(q+1);
|
|
(*p)--;
|
|
}
|
|
term = *p;
|
|
|
|
if ((len = p - l) != 0)
|
|
memmove(l+1, l, len);
|
|
*l = len;
|
|
|
|
p++;
|
|
|
|
if (term == 0)
|
|
*p = 0;
|
|
}
|
|
|
|
return l + 1 - (unsigned char *)name;
|
|
}
|
|
|
|
/* Note: no compression allowed in input. */
|
|
static void from_wire(char *name)
|
|
{
|
|
unsigned char *l, *p, *last;
|
|
int len;
|
|
|
|
for (last = (unsigned char *)name; *last != 0; last += *last+1);
|
|
|
|
for (l = (unsigned char *)name; *l != 0; l += len+1)
|
|
{
|
|
len = *l;
|
|
memmove(l, l+1, len);
|
|
for (p = l; p < l + len; p++)
|
|
if (*p == '.' || *p == 0 || *p == NAME_ESCAPE)
|
|
{
|
|
memmove(p+1, p, 1 + last - p);
|
|
len++;
|
|
*p++ = NAME_ESCAPE;
|
|
(*p)++;
|
|
}
|
|
|
|
l[len] = '.';
|
|
}
|
|
|
|
if ((char *)l != name)
|
|
*(l-1) = 0;
|
|
}
|
|
|
|
/* Input in presentation format */
|
|
static int count_labels(char *name)
|
|
{
|
|
int i;
|
|
|
|
if (*name == 0)
|
|
return 0;
|
|
|
|
for (i = 0; *name; name++)
|
|
if (*name == '.')
|
|
i++;
|
|
|
|
return i+1;
|
|
}
|
|
|
|
/* Implement RFC1982 wrapped compare for 32-bit numbers */
|
|
static int serial_compare_32(u32 s1, u32 s2)
|
|
{
|
|
if (s1 == s2)
|
|
return SERIAL_EQ;
|
|
|
|
if ((s1 < s2 && (s2 - s1) < (1UL<<31)) ||
|
|
(s1 > s2 && (s1 - s2) > (1UL<<31)))
|
|
return SERIAL_LT;
|
|
if ((s1 < s2 && (s2 - s1) > (1UL<<31)) ||
|
|
(s1 > s2 && (s1 - s2) < (1UL<<31)))
|
|
return SERIAL_GT;
|
|
return SERIAL_UNDEF;
|
|
}
|
|
|
|
/* Called at startup. If the timestamp file is configured and exists, put its mtime on
|
|
timestamp_time. If it doesn't exist, create it, and set the mtime to 1-1-2015.
|
|
return -1 -> Cannot create file.
|
|
0 -> not using timestamp, or timestamp exists and is in past.
|
|
1 -> timestamp exists and is in future.
|
|
*/
|
|
|
|
static time_t timestamp_time;
|
|
|
|
int setup_timestamp(void)
|
|
{
|
|
struct stat statbuf;
|
|
|
|
daemon->back_to_the_future = 0;
|
|
|
|
if (!daemon->timestamp_file)
|
|
return 0;
|
|
|
|
if (stat(daemon->timestamp_file, &statbuf) != -1)
|
|
{
|
|
timestamp_time = statbuf.st_mtime;
|
|
check_and_exit:
|
|
if (difftime(timestamp_time, time(0)) <= 0)
|
|
{
|
|
/* time already OK, update timestamp, and do key checking from the start. */
|
|
if (utime(daemon->timestamp_file, NULL) == -1)
|
|
my_syslog(LOG_ERR, _("failed to update mtime on %s: %s"), daemon->timestamp_file, strerror(errno));
|
|
daemon->back_to_the_future = 1;
|
|
return 0;
|
|
}
|
|
return 1;
|
|
}
|
|
|
|
if (errno == ENOENT)
|
|
{
|
|
/* NB. for explanation of O_EXCL flag, see comment on pidfile in dnsmasq.c */
|
|
int fd = open(daemon->timestamp_file, O_WRONLY | O_CREAT | O_NONBLOCK | O_EXCL, 0666);
|
|
if (fd != -1)
|
|
{
|
|
struct utimbuf timbuf;
|
|
|
|
close(fd);
|
|
|
|
timestamp_time = timbuf.actime = timbuf.modtime = 1420070400; /* 1-1-2015 */
|
|
if (utime(daemon->timestamp_file, &timbuf) == 0)
|
|
goto check_and_exit;
|
|
}
|
|
}
|
|
|
|
return -1;
|
|
}
|
|
|
|
/* Check whether today/now is between date_start and date_end */
|
|
static int check_date_range(u32 date_start, u32 date_end)
|
|
{
|
|
unsigned long curtime = time(0);
|
|
|
|
/* Checking timestamps may be temporarily disabled */
|
|
|
|
/* If the current time if _before_ the timestamp
|
|
on our persistent timestamp file, then assume the
|
|
time if not yet correct, and don't check the
|
|
key timestamps. As soon as the current time is
|
|
later then the timestamp, update the timestamp
|
|
and start checking keys */
|
|
if (daemon->timestamp_file)
|
|
{
|
|
if (daemon->back_to_the_future == 0 && difftime(timestamp_time, curtime) <= 0)
|
|
{
|
|
if (utime(daemon->timestamp_file, NULL) != 0)
|
|
my_syslog(LOG_ERR, _("failed to update mtime on %s: %s"), daemon->timestamp_file, strerror(errno));
|
|
|
|
daemon->back_to_the_future = 1;
|
|
set_option_bool(OPT_DNSSEC_TIME);
|
|
queue_event(EVENT_RELOAD); /* purge cache */
|
|
}
|
|
|
|
if (daemon->back_to_the_future == 0)
|
|
return 1;
|
|
}
|
|
else if (option_bool(OPT_DNSSEC_TIME))
|
|
return 1;
|
|
|
|
/* We must explicitly check against wanted values, because of SERIAL_UNDEF */
|
|
return serial_compare_32(curtime, date_start) == SERIAL_GT
|
|
&& serial_compare_32(curtime, date_end) == SERIAL_LT;
|
|
}
|
|
|
|
/* Return bytes of canonicalised rdata, when the return value is zero, the remaining
|
|
data, pointed to by *p, should be used raw. */
|
|
static int get_rdata(struct dns_header *header, size_t plen, unsigned char *end, char *buff, int bufflen,
|
|
unsigned char **p, u16 **desc)
|
|
{
|
|
int d = **desc;
|
|
|
|
/* No more data needs mangling */
|
|
if (d == (u16)-1)
|
|
{
|
|
/* If there's more data than we have space for, just return what fits,
|
|
we'll get called again for more chunks */
|
|
if (end - *p > bufflen)
|
|
{
|
|
memcpy(buff, *p, bufflen);
|
|
*p += bufflen;
|
|
return bufflen;
|
|
}
|
|
|
|
return 0;
|
|
}
|
|
|
|
(*desc)++;
|
|
|
|
if (d == 0 && extract_name(header, plen, p, buff, 1, 0))
|
|
/* domain-name, canonicalise */
|
|
return to_wire(buff);
|
|
else
|
|
{
|
|
/* plain data preceding a domain-name, don't run off the end of the data */
|
|
if ((end - *p) < d)
|
|
d = end - *p;
|
|
|
|
if (d != 0)
|
|
{
|
|
memcpy(buff, *p, d);
|
|
*p += d;
|
|
}
|
|
|
|
return d;
|
|
}
|
|
}
|
|
|
|
/* Bubble sort the RRset into the canonical order.
|
|
Note that the byte-streams from two RRs may get unsynced: consider
|
|
RRs which have two domain-names at the start and then other data.
|
|
The domain-names may have different lengths in each RR, but sort equal
|
|
|
|
------------
|
|
|abcde|fghi|
|
|
------------
|
|
|abcd|efghi|
|
|
------------
|
|
|
|
leaving the following bytes as deciding the order. Hence the nasty left1 and left2 variables.
|
|
*/
|
|
|
|
static void sort_rrset(struct dns_header *header, size_t plen, u16 *rr_desc, int rrsetidx,
|
|
unsigned char **rrset, char *buff1, char *buff2)
|
|
{
|
|
int swap, quit, i;
|
|
|
|
do
|
|
{
|
|
for (swap = 0, i = 0; i < rrsetidx-1; i++)
|
|
{
|
|
int rdlen1, rdlen2, left1, left2, len1, len2, len, rc;
|
|
u16 *dp1, *dp2;
|
|
unsigned char *end1, *end2;
|
|
/* Note that these have been determined to be OK previously,
|
|
so we don't need to check for NULL return here. */
|
|
unsigned char *p1 = skip_name(rrset[i], header, plen, 10);
|
|
unsigned char *p2 = skip_name(rrset[i+1], header, plen, 10);
|
|
|
|
p1 += 8; /* skip class, type, ttl */
|
|
GETSHORT(rdlen1, p1);
|
|
end1 = p1 + rdlen1;
|
|
|
|
p2 += 8; /* skip class, type, ttl */
|
|
GETSHORT(rdlen2, p2);
|
|
end2 = p2 + rdlen2;
|
|
|
|
dp1 = dp2 = rr_desc;
|
|
|
|
for (quit = 0, left1 = 0, left2 = 0, len1 = 0, len2 = 0; !quit;)
|
|
{
|
|
if (left1 != 0)
|
|
memmove(buff1, buff1 + len1 - left1, left1);
|
|
|
|
if ((len1 = get_rdata(header, plen, end1, buff1 + left1, (MAXDNAME * 2) - left1, &p1, &dp1)) == 0)
|
|
{
|
|
quit = 1;
|
|
len1 = end1 - p1;
|
|
memcpy(buff1 + left1, p1, len1);
|
|
}
|
|
len1 += left1;
|
|
|
|
if (left2 != 0)
|
|
memmove(buff2, buff2 + len2 - left2, left2);
|
|
|
|
if ((len2 = get_rdata(header, plen, end2, buff2 + left2, (MAXDNAME *2) - left2, &p2, &dp2)) == 0)
|
|
{
|
|
quit = 1;
|
|
len2 = end2 - p2;
|
|
memcpy(buff2 + left2, p2, len2);
|
|
}
|
|
len2 += left2;
|
|
|
|
if (len1 > len2)
|
|
left1 = len1 - len2, left2 = 0, len = len2;
|
|
else
|
|
left2 = len2 - len1, left1 = 0, len = len1;
|
|
|
|
rc = (len == 0) ? 0 : memcmp(buff1, buff2, len);
|
|
|
|
if (rc > 0 || (rc == 0 && quit && len1 > len2))
|
|
{
|
|
unsigned char *tmp = rrset[i+1];
|
|
rrset[i+1] = rrset[i];
|
|
rrset[i] = tmp;
|
|
swap = quit = 1;
|
|
}
|
|
else if (rc < 0)
|
|
quit = 1;
|
|
}
|
|
}
|
|
} while (swap);
|
|
}
|
|
|
|
static unsigned char **rrset = NULL, **sigs = NULL;
|
|
|
|
/* Get pointers to RRset menbers and signature(s) for same.
|
|
Check signatures, and return keyname associated in keyname. */
|
|
static int explore_rrset(struct dns_header *header, size_t plen, int class, int type,
|
|
char *name, char *keyname, int *sigcnt, int *rrcnt)
|
|
{
|
|
static int rrset_sz = 0, sig_sz = 0;
|
|
unsigned char *p;
|
|
int rrsetidx, sigidx, j, rdlen, res;
|
|
int gotkey = 0;
|
|
|
|
if (!(p = skip_questions(header, plen)))
|
|
return STAT_BOGUS;
|
|
|
|
/* look for RRSIGs for this RRset and get pointers to each RR in the set. */
|
|
for (rrsetidx = 0, sigidx = 0, j = ntohs(header->ancount) + ntohs(header->nscount);
|
|
j != 0; j--)
|
|
{
|
|
unsigned char *pstart, *pdata;
|
|
int stype, sclass, type_covered;
|
|
|
|
pstart = p;
|
|
|
|
if (!(res = extract_name(header, plen, &p, name, 0, 10)))
|
|
return STAT_BOGUS; /* bad packet */
|
|
|
|
GETSHORT(stype, p);
|
|
GETSHORT(sclass, p);
|
|
p += 4; /* TTL */
|
|
|
|
pdata = p;
|
|
|
|
GETSHORT(rdlen, p);
|
|
|
|
if (!CHECK_LEN(header, p, plen, rdlen))
|
|
return 0;
|
|
|
|
if (res == 1 && sclass == class)
|
|
{
|
|
if (stype == type)
|
|
{
|
|
if (!expand_workspace(&rrset, &rrset_sz, rrsetidx))
|
|
return 0;
|
|
|
|
rrset[rrsetidx++] = pstart;
|
|
}
|
|
|
|
if (stype == T_RRSIG)
|
|
{
|
|
if (rdlen < 18)
|
|
return 0; /* bad packet */
|
|
|
|
GETSHORT(type_covered, p);
|
|
p += 16; /* algo, labels, orig_ttl, sig_expiration, sig_inception, key_tag */
|
|
|
|
if (gotkey)
|
|
{
|
|
/* If there's more than one SIG, ensure they all have same keyname */
|
|
if (extract_name(header, plen, &p, keyname, 0, 0) != 1)
|
|
return 0;
|
|
}
|
|
else
|
|
{
|
|
gotkey = 1;
|
|
|
|
if (!extract_name(header, plen, &p, keyname, 1, 0))
|
|
return 0;
|
|
|
|
/* RFC 4035 5.3.1 says that the Signer's Name field MUST equal
|
|
the name of the zone containing the RRset. We can't tell that
|
|
for certain, but we can check that the RRset name is equal to
|
|
or encloses the signers name, which should be enough to stop
|
|
an attacker using signatures made with the key of an unrelated
|
|
zone he controls. Note that the root key is always allowed. */
|
|
if (*keyname != 0)
|
|
{
|
|
char *name_start;
|
|
for (name_start = name; !hostname_isequal(name_start, keyname); )
|
|
if ((name_start = strchr(name_start, '.')))
|
|
name_start++; /* chop a label off and try again */
|
|
else
|
|
return 0;
|
|
}
|
|
}
|
|
|
|
|
|
if (type_covered == type)
|
|
{
|
|
if (!expand_workspace(&sigs, &sig_sz, sigidx))
|
|
return 0;
|
|
|
|
sigs[sigidx++] = pdata;
|
|
}
|
|
|
|
p = pdata + 2; /* restore for ADD_RDLEN */
|
|
}
|
|
}
|
|
|
|
if (!ADD_RDLEN(header, p, plen, rdlen))
|
|
return 0;
|
|
}
|
|
|
|
*sigcnt = sigidx;
|
|
*rrcnt = rrsetidx;
|
|
|
|
return 1;
|
|
}
|
|
|
|
/* Validate a single RRset (class, type, name) in the supplied DNS reply
|
|
Return code:
|
|
STAT_SECURE if it validates.
|
|
STAT_SECURE_WILDCARD if it validates and is the result of wildcard expansion.
|
|
(In this case *wildcard_out points to the "body" of the wildcard within name.)
|
|
STAT_BOGUS signature is wrong, bad packet.
|
|
STAT_NEED_KEY need DNSKEY to complete validation (name is returned in keyname)
|
|
STAT_NEED_DS need DS to complete validation (name is returned in keyname)
|
|
|
|
If key is non-NULL, use that key, which has the algo and tag given in the params of those names,
|
|
otherwise find the key in the cache.
|
|
|
|
Name is unchanged on exit. keyname is used as workspace and trashed.
|
|
|
|
Call explore_rrset first to find and count RRs and sigs.
|
|
*/
|
|
static int validate_rrset(time_t now, struct dns_header *header, size_t plen, int class, int type, int sigidx, int rrsetidx,
|
|
char *name, char *keyname, char **wildcard_out, struct blockdata *key, int keylen, int algo_in, int keytag_in)
|
|
{
|
|
unsigned char *p;
|
|
int rdlen, j, name_labels, algo, labels, orig_ttl, key_tag;
|
|
struct crec *crecp = NULL;
|
|
u16 *rr_desc = rrfilter_desc(type);
|
|
u32 sig_expiration, sig_inception
|
|
;
|
|
if (wildcard_out)
|
|
*wildcard_out = NULL;
|
|
|
|
name_labels = count_labels(name); /* For 4035 5.3.2 check */
|
|
|
|
/* Sort RRset records into canonical order.
|
|
Note that at this point keyname and daemon->workspacename buffs are
|
|
unused, and used as workspace by the sort. */
|
|
sort_rrset(header, plen, rr_desc, rrsetidx, rrset, daemon->workspacename, keyname);
|
|
|
|
/* Now try all the sigs to try and find one which validates */
|
|
for (j = 0; j <sigidx; j++)
|
|
{
|
|
unsigned char *psav, *sig, *digest;
|
|
int i, wire_len, sig_len;
|
|
const struct nettle_hash *hash;
|
|
void *ctx;
|
|
char *name_start;
|
|
u32 nsigttl;
|
|
|
|
p = sigs[j];
|
|
GETSHORT(rdlen, p); /* rdlen >= 18 checked previously */
|
|
psav = p;
|
|
|
|
p += 2; /* type_covered - already checked */
|
|
algo = *p++;
|
|
labels = *p++;
|
|
GETLONG(orig_ttl, p);
|
|
GETLONG(sig_expiration, p);
|
|
GETLONG(sig_inception, p);
|
|
GETSHORT(key_tag, p);
|
|
|
|
if (!extract_name(header, plen, &p, keyname, 1, 0))
|
|
return STAT_BOGUS;
|
|
|
|
if (!check_date_range(sig_inception, sig_expiration) ||
|
|
labels > name_labels ||
|
|
!(hash = hash_find(algo_digest_name(algo))) ||
|
|
!hash_init(hash, &ctx, &digest))
|
|
continue;
|
|
|
|
/* OK, we have the signature record, see if the relevant DNSKEY is in the cache. */
|
|
if (!key && !(crecp = cache_find_by_name(NULL, keyname, now, F_DNSKEY)))
|
|
return STAT_NEED_KEY;
|
|
|
|
sig = p;
|
|
sig_len = rdlen - (p - psav);
|
|
|
|
nsigttl = htonl(orig_ttl);
|
|
|
|
hash->update(ctx, 18, psav);
|
|
wire_len = to_wire(keyname);
|
|
hash->update(ctx, (unsigned int)wire_len, (unsigned char*)keyname);
|
|
from_wire(keyname);
|
|
|
|
for (i = 0; i < rrsetidx; ++i)
|
|
{
|
|
int seg;
|
|
unsigned char *end, *cp;
|
|
u16 len, *dp;
|
|
|
|
p = rrset[i];
|
|
if (!extract_name(header, plen, &p, name, 1, 10))
|
|
return STAT_BOGUS;
|
|
|
|
name_start = name;
|
|
|
|
/* if more labels than in RRsig name, hash *.<no labels in rrsig labels field> 4035 5.3.2 */
|
|
if (labels < name_labels)
|
|
{
|
|
int k;
|
|
for (k = name_labels - labels; k != 0; k--)
|
|
{
|
|
while (*name_start != '.' && *name_start != 0)
|
|
name_start++;
|
|
if (k != 1 && *name_start == '.')
|
|
name_start++;
|
|
}
|
|
|
|
if (wildcard_out)
|
|
*wildcard_out = name_start+1;
|
|
|
|
name_start--;
|
|
*name_start = '*';
|
|
}
|
|
|
|
wire_len = to_wire(name_start);
|
|
hash->update(ctx, (unsigned int)wire_len, (unsigned char *)name_start);
|
|
hash->update(ctx, 4, p); /* class and type */
|
|
hash->update(ctx, 4, (unsigned char *)&nsigttl);
|
|
|
|
p += 8; /* skip class, type, ttl */
|
|
GETSHORT(rdlen, p);
|
|
if (!CHECK_LEN(header, p, plen, rdlen))
|
|
return STAT_BOGUS;
|
|
|
|
end = p + rdlen;
|
|
|
|
/* canonicalise rdata and calculate length of same, use name buffer as workspace.
|
|
Note that name buffer is twice MAXDNAME long in DNSSEC mode. */
|
|
cp = p;
|
|
dp = rr_desc;
|
|
for (len = 0; (seg = get_rdata(header, plen, end, name, MAXDNAME * 2, &cp, &dp)) != 0; len += seg);
|
|
len += end - cp;
|
|
len = htons(len);
|
|
hash->update(ctx, 2, (unsigned char *)&len);
|
|
|
|
/* Now canonicalise again and digest. */
|
|
cp = p;
|
|
dp = rr_desc;
|
|
while ((seg = get_rdata(header, plen, end, name, MAXDNAME * 2, &cp, &dp)))
|
|
hash->update(ctx, seg, (unsigned char *)name);
|
|
if (cp != end)
|
|
hash->update(ctx, end - cp, cp);
|
|
}
|
|
|
|
hash->digest(ctx, hash->digest_size, digest);
|
|
|
|
/* namebuff used for workspace above, restore to leave unchanged on exit */
|
|
p = (unsigned char*)(rrset[0]);
|
|
extract_name(header, plen, &p, name, 1, 0);
|
|
|
|
if (key)
|
|
{
|
|
if (algo_in == algo && keytag_in == key_tag &&
|
|
verify(key, keylen, sig, sig_len, digest, hash->digest_size, algo))
|
|
return STAT_SECURE;
|
|
}
|
|
else
|
|
{
|
|
/* iterate through all possible keys 4035 5.3.1 */
|
|
for (; crecp; crecp = cache_find_by_name(crecp, keyname, now, F_DNSKEY))
|
|
if (crecp->addr.key.algo == algo &&
|
|
crecp->addr.key.keytag == key_tag &&
|
|
crecp->uid == (unsigned int)class &&
|
|
verify(crecp->addr.key.keydata, crecp->addr.key.keylen, sig, sig_len, digest, hash->digest_size, algo))
|
|
return (labels < name_labels) ? STAT_SECURE_WILDCARD : STAT_SECURE;
|
|
}
|
|
}
|
|
|
|
return STAT_BOGUS;
|
|
}
|
|
|
|
|
|
/* The DNS packet is expected to contain the answer to a DNSKEY query.
|
|
Put all DNSKEYs in the answer which are valid into the cache.
|
|
return codes:
|
|
STAT_OK Done, key(s) in cache.
|
|
STAT_BOGUS No DNSKEYs found, which can be validated with DS,
|
|
or self-sign for DNSKEY RRset is not valid, bad packet.
|
|
STAT_NEED_DS DS records to validate a key not found, name in keyname
|
|
STAT_NEED_KEY DNSKEY records to validate a key not found, name in keyname
|
|
*/
|
|
int dnssec_validate_by_ds(time_t now, struct dns_header *header, size_t plen, char *name, char *keyname, int class)
|
|
{
|
|
unsigned char *psave, *p = (unsigned char *)(header+1);
|
|
struct crec *crecp, *recp1;
|
|
int rc, j, qtype, qclass, ttl, rdlen, flags, algo, valid, keytag;
|
|
struct blockdata *key;
|
|
struct all_addr a;
|
|
|
|
if (ntohs(header->qdcount) != 1 ||
|
|
!extract_name(header, plen, &p, name, 1, 4))
|
|
return STAT_BOGUS;
|
|
|
|
GETSHORT(qtype, p);
|
|
GETSHORT(qclass, p);
|
|
|
|
if (qtype != T_DNSKEY || qclass != class || ntohs(header->ancount) == 0)
|
|
return STAT_BOGUS;
|
|
|
|
/* See if we have cached a DS record which validates this key */
|
|
if (!(crecp = cache_find_by_name(NULL, name, now, F_DS)))
|
|
{
|
|
strcpy(keyname, name);
|
|
return STAT_NEED_DS;
|
|
}
|
|
|
|
/* NOTE, we need to find ONE DNSKEY which matches the DS */
|
|
for (valid = 0, j = ntohs(header->ancount); j != 0 && !valid; j--)
|
|
{
|
|
/* Ensure we have type, class TTL and length */
|
|
if (!(rc = extract_name(header, plen, &p, name, 0, 10)))
|
|
return STAT_BOGUS; /* bad packet */
|
|
|
|
GETSHORT(qtype, p);
|
|
GETSHORT(qclass, p);
|
|
GETLONG(ttl, p);
|
|
GETSHORT(rdlen, p);
|
|
|
|
if (!CHECK_LEN(header, p, plen, rdlen) || rdlen < 4)
|
|
return STAT_BOGUS; /* bad packet */
|
|
|
|
if (qclass != class || qtype != T_DNSKEY || rc == 2)
|
|
{
|
|
p += rdlen;
|
|
continue;
|
|
}
|
|
|
|
psave = p;
|
|
|
|
GETSHORT(flags, p);
|
|
if (*p++ != 3)
|
|
return STAT_BOGUS;
|
|
algo = *p++;
|
|
keytag = dnskey_keytag(algo, flags, p, rdlen - 4);
|
|
key = NULL;
|
|
|
|
/* key must have zone key flag set */
|
|
if (flags & 0x100)
|
|
key = blockdata_alloc((char*)p, rdlen - 4);
|
|
|
|
p = psave;
|
|
|
|
if (!ADD_RDLEN(header, p, plen, rdlen))
|
|
{
|
|
if (key)
|
|
blockdata_free(key);
|
|
return STAT_BOGUS; /* bad packet */
|
|
}
|
|
|
|
/* No zone key flag or malloc failure */
|
|
if (!key)
|
|
continue;
|
|
|
|
for (recp1 = crecp; recp1; recp1 = cache_find_by_name(recp1, name, now, F_DS))
|
|
{
|
|
void *ctx;
|
|
unsigned char *digest, *ds_digest;
|
|
const struct nettle_hash *hash;
|
|
int sigcnt, rrcnt;
|
|
|
|
if (recp1->addr.ds.algo == algo &&
|
|
recp1->addr.ds.keytag == keytag &&
|
|
recp1->uid == (unsigned int)class &&
|
|
(hash = hash_find(ds_digest_name(recp1->addr.ds.digest))) &&
|
|
hash_init(hash, &ctx, &digest))
|
|
|
|
{
|
|
int wire_len = to_wire(name);
|
|
|
|
/* Note that digest may be different between DSs, so
|
|
we can't move this outside the loop. */
|
|
hash->update(ctx, (unsigned int)wire_len, (unsigned char *)name);
|
|
hash->update(ctx, (unsigned int)rdlen, psave);
|
|
hash->digest(ctx, hash->digest_size, digest);
|
|
|
|
from_wire(name);
|
|
|
|
if (!(recp1->flags & F_NEG) &&
|
|
recp1->addr.ds.keylen == (int)hash->digest_size &&
|
|
(ds_digest = blockdata_retrieve(recp1->addr.key.keydata, recp1->addr.ds.keylen, NULL)) &&
|
|
memcmp(ds_digest, digest, recp1->addr.ds.keylen) == 0 &&
|
|
explore_rrset(header, plen, class, T_DNSKEY, name, keyname, &sigcnt, &rrcnt) &&
|
|
sigcnt != 0 && rrcnt != 0 &&
|
|
validate_rrset(now, header, plen, class, T_DNSKEY, sigcnt, rrcnt, name, keyname,
|
|
NULL, key, rdlen - 4, algo, keytag) == STAT_SECURE)
|
|
{
|
|
valid = 1;
|
|
break;
|
|
}
|
|
}
|
|
}
|
|
blockdata_free(key);
|
|
}
|
|
|
|
if (valid)
|
|
{
|
|
/* DNSKEY RRset determined to be OK, now cache it. */
|
|
cache_start_insert();
|
|
|
|
p = skip_questions(header, plen);
|
|
|
|
for (j = ntohs(header->ancount); j != 0; j--)
|
|
{
|
|
/* Ensure we have type, class TTL and length */
|
|
if (!(rc = extract_name(header, plen, &p, name, 0, 10)))
|
|
return STAT_BOGUS; /* bad packet */
|
|
|
|
GETSHORT(qtype, p);
|
|
GETSHORT(qclass, p);
|
|
GETLONG(ttl, p);
|
|
GETSHORT(rdlen, p);
|
|
|
|
if (!CHECK_LEN(header, p, plen, rdlen))
|
|
return STAT_BOGUS; /* bad packet */
|
|
|
|
if (qclass == class && rc == 1)
|
|
{
|
|
psave = p;
|
|
|
|
if (qtype == T_DNSKEY)
|
|
{
|
|
if (rdlen < 4)
|
|
return STAT_BOGUS; /* bad packet */
|
|
|
|
GETSHORT(flags, p);
|
|
if (*p++ != 3)
|
|
return STAT_BOGUS;
|
|
algo = *p++;
|
|
keytag = dnskey_keytag(algo, flags, p, rdlen - 4);
|
|
|
|
/* Cache needs to known class for DNSSEC stuff */
|
|
a.addr.dnssec.class = class;
|
|
|
|
if ((key = blockdata_alloc((char*)p, rdlen - 4)))
|
|
{
|
|
if (!(recp1 = cache_insert(name, &a, now, ttl, F_FORWARD | F_DNSKEY | F_DNSSECOK)))
|
|
{
|
|
blockdata_free(key);
|
|
return STAT_BOGUS;
|
|
}
|
|
else
|
|
{
|
|
a.addr.log.keytag = keytag;
|
|
a.addr.log.algo = algo;
|
|
if (verify_func(algo))
|
|
log_query(F_NOEXTRA | F_KEYTAG | F_UPSTREAM, name, &a, "DNSKEY keytag %hu, algo %hu");
|
|
else
|
|
log_query(F_NOEXTRA | F_KEYTAG | F_UPSTREAM, name, &a, "DNSKEY keytag %hu, algo %hu (not supported)");
|
|
|
|
recp1->addr.key.keylen = rdlen - 4;
|
|
recp1->addr.key.keydata = key;
|
|
recp1->addr.key.algo = algo;
|
|
recp1->addr.key.keytag = keytag;
|
|
recp1->addr.key.flags = flags;
|
|
}
|
|
}
|
|
}
|
|
|
|
p = psave;
|
|
}
|
|
|
|
if (!ADD_RDLEN(header, p, plen, rdlen))
|
|
return STAT_BOGUS; /* bad packet */
|
|
}
|
|
|
|
/* commit cache insert. */
|
|
cache_end_insert();
|
|
return STAT_OK;
|
|
}
|
|
|
|
log_query(F_NOEXTRA | F_UPSTREAM, name, NULL, "BOGUS DNSKEY");
|
|
return STAT_BOGUS;
|
|
}
|
|
|
|
/* The DNS packet is expected to contain the answer to a DS query
|
|
Put all DSs in the answer which are valid into the cache.
|
|
Also handles replies which prove that there's no DS at this location,
|
|
either because the zone is unsigned or this isn't a zone cut. These are
|
|
cached too.
|
|
return codes:
|
|
STAT_OK At least one valid DS found and in cache.
|
|
STAT_BOGUS no DS in reply or not signed, fails validation, bad packet.
|
|
STAT_NEED_KEY DNSKEY records to validate a DS not found, name in keyname
|
|
STAT_NEED_DS DS record needed.
|
|
*/
|
|
|
|
int dnssec_validate_ds(time_t now, struct dns_header *header, size_t plen, char *name, char *keyname, int class)
|
|
{
|
|
unsigned char *p = (unsigned char *)(header+1);
|
|
int qtype, qclass, rc, i, neganswer, nons;
|
|
int aclass, atype, rdlen;
|
|
unsigned long ttl;
|
|
struct all_addr a;
|
|
|
|
if (ntohs(header->qdcount) != 1 ||
|
|
!(p = skip_name(p, header, plen, 4)))
|
|
return STAT_BOGUS;
|
|
|
|
GETSHORT(qtype, p);
|
|
GETSHORT(qclass, p);
|
|
|
|
if (qtype != T_DS || qclass != class)
|
|
rc = STAT_BOGUS;
|
|
else
|
|
rc = dnssec_validate_reply(now, header, plen, name, keyname, NULL, 0, &neganswer, &nons);
|
|
/* Note dnssec_validate_reply() will have cached positive answers */
|
|
|
|
if (rc == STAT_INSECURE)
|
|
rc = STAT_BOGUS;
|
|
|
|
p = (unsigned char *)(header+1);
|
|
extract_name(header, plen, &p, name, 1, 4);
|
|
p += 4; /* qtype, qclass */
|
|
|
|
/* If the key needed to validate the DS is on the same domain as the DS, we'll
|
|
loop getting nowhere. Stop that now. This can happen of the DS answer comes
|
|
from the DS's zone, and not the parent zone. */
|
|
if (rc == STAT_BOGUS || (rc == STAT_NEED_KEY && hostname_isequal(name, keyname)))
|
|
{
|
|
log_query(F_NOEXTRA | F_UPSTREAM, name, NULL, "BOGUS DS");
|
|
return STAT_BOGUS;
|
|
}
|
|
|
|
if (rc != STAT_SECURE)
|
|
return rc;
|
|
|
|
if (!neganswer)
|
|
{
|
|
cache_start_insert();
|
|
|
|
for (i = 0; i < ntohs(header->ancount); i++)
|
|
{
|
|
if (!(rc = extract_name(header, plen, &p, name, 0, 10)))
|
|
return STAT_BOGUS; /* bad packet */
|
|
|
|
GETSHORT(atype, p);
|
|
GETSHORT(aclass, p);
|
|
GETLONG(ttl, p);
|
|
GETSHORT(rdlen, p);
|
|
|
|
if (!CHECK_LEN(header, p, plen, rdlen))
|
|
return STAT_BOGUS; /* bad packet */
|
|
|
|
if (aclass == class && atype == T_DS && rc == 1)
|
|
{
|
|
int algo, digest, keytag;
|
|
unsigned char *psave = p;
|
|
struct blockdata *key;
|
|
struct crec *crecp;
|
|
|
|
if (rdlen < 4)
|
|
return STAT_BOGUS; /* bad packet */
|
|
|
|
GETSHORT(keytag, p);
|
|
algo = *p++;
|
|
digest = *p++;
|
|
|
|
/* Cache needs to known class for DNSSEC stuff */
|
|
a.addr.dnssec.class = class;
|
|
|
|
if ((key = blockdata_alloc((char*)p, rdlen - 4)))
|
|
{
|
|
if (!(crecp = cache_insert(name, &a, now, ttl, F_FORWARD | F_DS | F_DNSSECOK)))
|
|
{
|
|
blockdata_free(key);
|
|
return STAT_BOGUS;
|
|
}
|
|
else
|
|
{
|
|
a.addr.log.keytag = keytag;
|
|
a.addr.log.algo = algo;
|
|
a.addr.log.digest = digest;
|
|
if (hash_find(ds_digest_name(digest)) && verify_func(algo))
|
|
log_query(F_NOEXTRA | F_KEYTAG | F_UPSTREAM, name, &a, "DS keytag %hu, algo %hu, digest %hu");
|
|
else
|
|
log_query(F_NOEXTRA | F_KEYTAG | F_UPSTREAM, name, &a, "DS keytag %hu, algo %hu, digest %hu (not supported)");
|
|
|
|
crecp->addr.ds.digest = digest;
|
|
crecp->addr.ds.keydata = key;
|
|
crecp->addr.ds.algo = algo;
|
|
crecp->addr.ds.keytag = keytag;
|
|
crecp->addr.ds.keylen = rdlen - 4;
|
|
}
|
|
}
|
|
|
|
p = psave;
|
|
}
|
|
if (!ADD_RDLEN(header, p, plen, rdlen))
|
|
return STAT_BOGUS; /* bad packet */
|
|
}
|
|
|
|
cache_end_insert();
|
|
|
|
}
|
|
else
|
|
{
|
|
int flags = F_FORWARD | F_DS | F_NEG | F_DNSSECOK;
|
|
unsigned long minttl = ULONG_MAX;
|
|
|
|
if (!(p = skip_section(p, ntohs(header->ancount), header, plen)))
|
|
return STAT_BOGUS;
|
|
|
|
if (RCODE(header) == NXDOMAIN)
|
|
flags |= F_NXDOMAIN;
|
|
|
|
/* We only cache validated DS records, DNSSECOK flag hijacked
|
|
to store presence/absence of NS. */
|
|
if (nons)
|
|
flags &= ~F_DNSSECOK;
|
|
|
|
for (i = ntohs(header->nscount); i != 0; i--)
|
|
{
|
|
if (!(p = skip_name(p, header, plen, 0)))
|
|
return STAT_BOGUS;
|
|
|
|
GETSHORT(atype, p);
|
|
GETSHORT(aclass, p);
|
|
GETLONG(ttl, p);
|
|
GETSHORT(rdlen, p);
|
|
|
|
if (!CHECK_LEN(header, p, plen, rdlen))
|
|
return STAT_BOGUS; /* bad packet */
|
|
|
|
if (aclass != class || atype != T_SOA)
|
|
{
|
|
p += rdlen;
|
|
continue;
|
|
}
|
|
|
|
if (ttl < minttl)
|
|
minttl = ttl;
|
|
|
|
/* MNAME */
|
|
if (!(p = skip_name(p, header, plen, 0)))
|
|
return STAT_BOGUS;
|
|
/* RNAME */
|
|
if (!(p = skip_name(p, header, plen, 20)))
|
|
return STAT_BOGUS;
|
|
p += 16; /* SERIAL REFRESH RETRY EXPIRE */
|
|
|
|
GETLONG(ttl, p); /* minTTL */
|
|
if (ttl < minttl)
|
|
minttl = ttl;
|
|
|
|
break;
|
|
}
|
|
|
|
if (i != 0)
|
|
{
|
|
cache_start_insert();
|
|
|
|
a.addr.dnssec.class = class;
|
|
if (!cache_insert(name, &a, now, ttl, flags))
|
|
return STAT_BOGUS;
|
|
|
|
cache_end_insert();
|
|
|
|
log_query(F_NOEXTRA | F_UPSTREAM, name, NULL, "no DS");
|
|
}
|
|
}
|
|
|
|
return STAT_OK;
|
|
}
|
|
|
|
|
|
/* 4034 6.1 */
|
|
static int hostname_cmp(const char *a, const char *b)
|
|
{
|
|
char *sa, *ea, *ca, *sb, *eb, *cb;
|
|
unsigned char ac, bc;
|
|
|
|
sa = ea = (char *)a + strlen(a);
|
|
sb = eb = (char *)b + strlen(b);
|
|
|
|
while (1)
|
|
{
|
|
while (sa != a && *(sa-1) != '.')
|
|
sa--;
|
|
|
|
while (sb != b && *(sb-1) != '.')
|
|
sb--;
|
|
|
|
ca = sa;
|
|
cb = sb;
|
|
|
|
while (1)
|
|
{
|
|
if (ca == ea)
|
|
{
|
|
if (cb == eb)
|
|
break;
|
|
|
|
return -1;
|
|
}
|
|
|
|
if (cb == eb)
|
|
return 1;
|
|
|
|
ac = (unsigned char) *ca++;
|
|
bc = (unsigned char) *cb++;
|
|
|
|
if (ac >= 'A' && ac <= 'Z')
|
|
ac += 'a' - 'A';
|
|
if (bc >= 'A' && bc <= 'Z')
|
|
bc += 'a' - 'A';
|
|
|
|
if (ac < bc)
|
|
return -1;
|
|
else if (ac != bc)
|
|
return 1;
|
|
}
|
|
|
|
|
|
if (sa == a)
|
|
{
|
|
if (sb == b)
|
|
return 0;
|
|
|
|
return -1;
|
|
}
|
|
|
|
if (sb == b)
|
|
return 1;
|
|
|
|
ea = --sa;
|
|
eb = --sb;
|
|
}
|
|
}
|
|
|
|
static int prove_non_existence_nsec(struct dns_header *header, size_t plen, unsigned char **nsecs, int nsec_count,
|
|
char *workspace1, char *workspace2, char *name, int type, int *nons)
|
|
{
|
|
int i, rc, rdlen;
|
|
unsigned char *p, *psave;
|
|
int offset = (type & 0xff) >> 3;
|
|
int mask = 0x80 >> (type & 0x07);
|
|
|
|
if (nons)
|
|
*nons = 1;
|
|
|
|
/* Find NSEC record that proves name doesn't exist */
|
|
for (i = 0; i < nsec_count; i++)
|
|
{
|
|
p = nsecs[i];
|
|
if (!extract_name(header, plen, &p, workspace1, 1, 10))
|
|
return 0;
|
|
p += 8; /* class, type, TTL */
|
|
GETSHORT(rdlen, p);
|
|
psave = p;
|
|
if (!extract_name(header, plen, &p, workspace2, 1, 10))
|
|
return 0;
|
|
|
|
rc = hostname_cmp(workspace1, name);
|
|
|
|
if (rc == 0)
|
|
{
|
|
/* 4035 para 5.4. Last sentence */
|
|
if (type == T_NSEC || type == T_RRSIG)
|
|
return 1;
|
|
|
|
/* NSEC with the same name as the RR we're testing, check
|
|
that the type in question doesn't appear in the type map */
|
|
rdlen -= p - psave;
|
|
/* rdlen is now length of type map, and p points to it */
|
|
|
|
/* If we can prove that there's no NS record, return that information. */
|
|
if (nons && rdlen >= 2 && p[0] == 0 && (p[2] & (0x80 >> T_NS)) != 0)
|
|
*nons = 0;
|
|
|
|
if (rdlen >= 2 && p[0] == 0)
|
|
{
|
|
/* A CNAME answer would also be valid, so if there's a CNAME is should
|
|
have been returned. */
|
|
if ((p[2] & (0x80 >> T_CNAME)) != 0)
|
|
return 0;
|
|
|
|
/* If the SOA bit is set for a DS record, then we have the
|
|
DS from the wrong side of the delegation. */
|
|
if (type == T_DS && (p[2] & (0x80 >> T_SOA)) != 0)
|
|
return 0;
|
|
}
|
|
|
|
while (rdlen >= 2)
|
|
{
|
|
if (!CHECK_LEN(header, p, plen, rdlen))
|
|
return 0;
|
|
|
|
if (p[0] == type >> 8)
|
|
{
|
|
/* Does the NSEC say our type exists? */
|
|
if (offset < p[1] && (p[offset+2] & mask) != 0)
|
|
return 0;
|
|
|
|
break; /* finshed checking */
|
|
}
|
|
|
|
rdlen -= p[1];
|
|
p += p[1];
|
|
}
|
|
|
|
return 1;
|
|
}
|
|
else if (rc == -1)
|
|
{
|
|
/* Normal case, name falls between NSEC name and next domain name,
|
|
wrap around case, name falls between NSEC name (rc == -1) and end */
|
|
if (hostname_cmp(workspace2, name) >= 0 || hostname_cmp(workspace1, workspace2) >= 0)
|
|
return 1;
|
|
}
|
|
else
|
|
{
|
|
/* wrap around case, name falls between start and next domain name */
|
|
if (hostname_cmp(workspace1, workspace2) >= 0 && hostname_cmp(workspace2, name) >=0 )
|
|
return 1;
|
|
}
|
|
}
|
|
|
|
return 0;
|
|
}
|
|
|
|
/* return digest length, or zero on error */
|
|
static int hash_name(char *in, unsigned char **out, struct nettle_hash const *hash,
|
|
unsigned char *salt, int salt_len, int iterations)
|
|
{
|
|
void *ctx;
|
|
unsigned char *digest;
|
|
int i;
|
|
|
|
if (!hash_init(hash, &ctx, &digest))
|
|
return 0;
|
|
|
|
hash->update(ctx, to_wire(in), (unsigned char *)in);
|
|
hash->update(ctx, salt_len, salt);
|
|
hash->digest(ctx, hash->digest_size, digest);
|
|
|
|
for(i = 0; i < iterations; i++)
|
|
{
|
|
hash->update(ctx, hash->digest_size, digest);
|
|
hash->update(ctx, salt_len, salt);
|
|
hash->digest(ctx, hash->digest_size, digest);
|
|
}
|
|
|
|
from_wire(in);
|
|
|
|
*out = digest;
|
|
return hash->digest_size;
|
|
}
|
|
|
|
/* Decode base32 to first "." or end of string */
|
|
static int base32_decode(char *in, unsigned char *out)
|
|
{
|
|
int oc, on, c, mask, i;
|
|
unsigned char *p = out;
|
|
|
|
for (c = *in, oc = 0, on = 0; c != 0 && c != '.'; c = *++in)
|
|
{
|
|
if (c >= '0' && c <= '9')
|
|
c -= '0';
|
|
else if (c >= 'a' && c <= 'v')
|
|
c -= 'a', c += 10;
|
|
else if (c >= 'A' && c <= 'V')
|
|
c -= 'A', c += 10;
|
|
else
|
|
return 0;
|
|
|
|
for (mask = 0x10, i = 0; i < 5; i++)
|
|
{
|
|
if (c & mask)
|
|
oc |= 1;
|
|
mask = mask >> 1;
|
|
if (((++on) & 7) == 0)
|
|
*p++ = oc;
|
|
oc = oc << 1;
|
|
}
|
|
}
|
|
|
|
if ((on & 7) != 0)
|
|
return 0;
|
|
|
|
return p - out;
|
|
}
|
|
|
|
static int check_nsec3_coverage(struct dns_header *header, size_t plen, int digest_len, unsigned char *digest, int type,
|
|
char *workspace1, char *workspace2, unsigned char **nsecs, int nsec_count, int *nons)
|
|
{
|
|
int i, hash_len, salt_len, base32_len, rdlen, flags;
|
|
unsigned char *p, *psave;
|
|
|
|
for (i = 0; i < nsec_count; i++)
|
|
if ((p = nsecs[i]))
|
|
{
|
|
if (!extract_name(header, plen, &p, workspace1, 1, 0) ||
|
|
!(base32_len = base32_decode(workspace1, (unsigned char *)workspace2)))
|
|
return 0;
|
|
|
|
p += 8; /* class, type, TTL */
|
|
GETSHORT(rdlen, p);
|
|
psave = p;
|
|
p++; /* algo */
|
|
flags = *p++; /* flags */
|
|
p += 2; /* iterations */
|
|
salt_len = *p++; /* salt_len */
|
|
p += salt_len; /* salt */
|
|
hash_len = *p++; /* p now points to next hashed name */
|
|
|
|
if (!CHECK_LEN(header, p, plen, hash_len))
|
|
return 0;
|
|
|
|
if (digest_len == base32_len && hash_len == base32_len)
|
|
{
|
|
int rc = memcmp(workspace2, digest, digest_len);
|
|
|
|
if (rc == 0)
|
|
{
|
|
/* We found an NSEC3 whose hashed name exactly matches the query, so
|
|
we just need to check the type map. p points to the RR data for the record. */
|
|
|
|
int offset = (type & 0xff) >> 3;
|
|
int mask = 0x80 >> (type & 0x07);
|
|
|
|
p += hash_len; /* skip next-domain hash */
|
|
rdlen -= p - psave;
|
|
|
|
if (!CHECK_LEN(header, p, plen, rdlen))
|
|
return 0;
|
|
|
|
if (rdlen >= 2 && p[0] == 0)
|
|
{
|
|
/* If we can prove that there's no NS record, return that information. */
|
|
if (nons && (p[2] & (0x80 >> T_NS)) != 0)
|
|
*nons = 0;
|
|
|
|
/* A CNAME answer would also be valid, so if there's a CNAME is should
|
|
have been returned. */
|
|
if ((p[2] & (0x80 >> T_CNAME)) != 0)
|
|
return 0;
|
|
|
|
/* If the SOA bit is set for a DS record, then we have the
|
|
DS from the wrong side of the delegation. */
|
|
if (type == T_DS && (p[2] & (0x80 >> T_SOA)) != 0)
|
|
return 0;
|
|
}
|
|
|
|
while (rdlen >= 2)
|
|
{
|
|
if (p[0] == type >> 8)
|
|
{
|
|
/* Does the NSEC3 say our type exists? */
|
|
if (offset < p[1] && (p[offset+2] & mask) != 0)
|
|
return 0;
|
|
|
|
break; /* finshed checking */
|
|
}
|
|
|
|
rdlen -= p[1];
|
|
p += p[1];
|
|
}
|
|
|
|
return 1;
|
|
}
|
|
else if (rc < 0)
|
|
{
|
|
/* Normal case, hash falls between NSEC3 name-hash and next domain name-hash,
|
|
wrap around case, name-hash falls between NSEC3 name-hash and end */
|
|
if (memcmp(p, digest, digest_len) >= 0 || memcmp(workspace2, p, digest_len) >= 0)
|
|
{
|
|
if ((flags & 0x01) && nons) /* opt out */
|
|
*nons = 0;
|
|
|
|
return 1;
|
|
}
|
|
}
|
|
else
|
|
{
|
|
/* wrap around case, name falls between start and next domain name */
|
|
if (memcmp(workspace2, p, digest_len) >= 0 && memcmp(p, digest, digest_len) >= 0)
|
|
{
|
|
if ((flags & 0x01) && nons) /* opt out */
|
|
*nons = 0;
|
|
|
|
return 1;
|
|
}
|
|
}
|
|
}
|
|
}
|
|
|
|
return 0;
|
|
}
|
|
|
|
static int prove_non_existence_nsec3(struct dns_header *header, size_t plen, unsigned char **nsecs, int nsec_count,
|
|
char *workspace1, char *workspace2, char *name, int type, char *wildname, int *nons)
|
|
{
|
|
unsigned char *salt, *p, *digest;
|
|
int digest_len, i, iterations, salt_len, base32_len, algo = 0;
|
|
struct nettle_hash const *hash;
|
|
char *closest_encloser, *next_closest, *wildcard;
|
|
|
|
if (nons)
|
|
*nons = 1;
|
|
|
|
/* Look though the NSEC3 records to find the first one with
|
|
an algorithm we support.
|
|
|
|
Take the algo, iterations, and salt of that record
|
|
as the ones we're going to use, and prune any
|
|
that don't match. */
|
|
|
|
for (i = 0; i < nsec_count; i++)
|
|
{
|
|
if (!(p = skip_name(nsecs[i], header, plen, 15)))
|
|
return 0; /* bad packet */
|
|
|
|
p += 10; /* type, class, TTL, rdlen */
|
|
algo = *p++;
|
|
|
|
if ((hash = hash_find(nsec3_digest_name(algo))))
|
|
break; /* known algo */
|
|
}
|
|
|
|
/* No usable NSEC3s */
|
|
if (i == nsec_count)
|
|
return 0;
|
|
|
|
p++; /* flags */
|
|
GETSHORT (iterations, p);
|
|
salt_len = *p++;
|
|
salt = p;
|
|
if (!CHECK_LEN(header, salt, plen, salt_len))
|
|
return 0; /* bad packet */
|
|
|
|
/* Now prune so we only have NSEC3 records with same iterations, salt and algo */
|
|
for (i = 0; i < nsec_count; i++)
|
|
{
|
|
unsigned char *nsec3p = nsecs[i];
|
|
int this_iter, flags;
|
|
|
|
nsecs[i] = NULL; /* Speculative, will be restored if OK. */
|
|
|
|
if (!(p = skip_name(nsec3p, header, plen, 15)))
|
|
return 0; /* bad packet */
|
|
|
|
p += 10; /* type, class, TTL, rdlen */
|
|
|
|
if (*p++ != algo)
|
|
continue;
|
|
|
|
flags = *p++; /* flags */
|
|
|
|
/* 5155 8.2 */
|
|
if (flags != 0 && flags != 1)
|
|
continue;
|
|
|
|
GETSHORT(this_iter, p);
|
|
if (this_iter != iterations)
|
|
continue;
|
|
|
|
if (salt_len != *p++)
|
|
continue;
|
|
|
|
if (!CHECK_LEN(header, p, plen, salt_len))
|
|
return 0; /* bad packet */
|
|
|
|
if (memcmp(p, salt, salt_len) != 0)
|
|
continue;
|
|
|
|
/* All match, put the pointer back */
|
|
nsecs[i] = nsec3p;
|
|
}
|
|
|
|
if ((digest_len = hash_name(name, &digest, hash, salt, salt_len, iterations)) == 0)
|
|
return 0;
|
|
|
|
if (check_nsec3_coverage(header, plen, digest_len, digest, type, workspace1, workspace2, nsecs, nsec_count, nons))
|
|
return 1;
|
|
|
|
/* Can't find an NSEC3 which covers the name directly, we need the "closest encloser NSEC3"
|
|
or an answer inferred from a wildcard record. */
|
|
closest_encloser = name;
|
|
next_closest = NULL;
|
|
|
|
do
|
|
{
|
|
if (*closest_encloser == '.')
|
|
closest_encloser++;
|
|
|
|
if (wildname && hostname_isequal(closest_encloser, wildname))
|
|
break;
|
|
|
|
if ((digest_len = hash_name(closest_encloser, &digest, hash, salt, salt_len, iterations)) == 0)
|
|
return 0;
|
|
|
|
for (i = 0; i < nsec_count; i++)
|
|
if ((p = nsecs[i]))
|
|
{
|
|
if (!extract_name(header, plen, &p, workspace1, 1, 0) ||
|
|
!(base32_len = base32_decode(workspace1, (unsigned char *)workspace2)))
|
|
return 0;
|
|
|
|
if (digest_len == base32_len &&
|
|
memcmp(digest, workspace2, digest_len) == 0)
|
|
break; /* Gotit */
|
|
}
|
|
|
|
if (i != nsec_count)
|
|
break;
|
|
|
|
next_closest = closest_encloser;
|
|
}
|
|
while ((closest_encloser = strchr(closest_encloser, '.')));
|
|
|
|
if (!closest_encloser)
|
|
return 0;
|
|
|
|
/* Look for NSEC3 that proves the non-existence of the next-closest encloser */
|
|
if ((digest_len = hash_name(next_closest, &digest, hash, salt, salt_len, iterations)) == 0)
|
|
return 0;
|
|
|
|
if (!check_nsec3_coverage(header, plen, digest_len, digest, type, workspace1, workspace2, nsecs, nsec_count, NULL))
|
|
return 0;
|
|
|
|
/* Finally, check that there's no seat of wildcard synthesis */
|
|
if (!wildname)
|
|
{
|
|
if (!(wildcard = strchr(next_closest, '.')) || wildcard == next_closest)
|
|
return 0;
|
|
|
|
wildcard--;
|
|
*wildcard = '*';
|
|
|
|
if ((digest_len = hash_name(wildcard, &digest, hash, salt, salt_len, iterations)) == 0)
|
|
return 0;
|
|
|
|
if (!check_nsec3_coverage(header, plen, digest_len, digest, type, workspace1, workspace2, nsecs, nsec_count, NULL))
|
|
return 0;
|
|
}
|
|
|
|
return 1;
|
|
}
|
|
|
|
static int prove_non_existence(struct dns_header *header, size_t plen, char *keyname, char *name, int qtype, int qclass, char *wildname, int *nons)
|
|
{
|
|
static unsigned char **nsecset = NULL;
|
|
static int nsecset_sz = 0;
|
|
|
|
int type_found = 0;
|
|
unsigned char *p = skip_questions(header, plen);
|
|
int type, class, rdlen, i, nsecs_found;
|
|
|
|
/* Move to NS section */
|
|
if (!p || !(p = skip_section(p, ntohs(header->ancount), header, plen)))
|
|
return 0;
|
|
|
|
for (nsecs_found = 0, i = ntohs(header->nscount); i != 0; i--)
|
|
{
|
|
unsigned char *pstart = p;
|
|
|
|
if (!(p = skip_name(p, header, plen, 10)))
|
|
return 0;
|
|
|
|
GETSHORT(type, p);
|
|
GETSHORT(class, p);
|
|
p += 4; /* TTL */
|
|
GETSHORT(rdlen, p);
|
|
|
|
if (class == qclass && (type == T_NSEC || type == T_NSEC3))
|
|
{
|
|
/* No mixed NSECing 'round here, thankyouverymuch */
|
|
if (type_found != 0 && type_found != type)
|
|
return 0;
|
|
|
|
type_found = type;
|
|
|
|
if (!expand_workspace(&nsecset, &nsecset_sz, nsecs_found))
|
|
return 0;
|
|
|
|
nsecset[nsecs_found++] = pstart;
|
|
}
|
|
|
|
if (!ADD_RDLEN(header, p, plen, rdlen))
|
|
return 0;
|
|
}
|
|
|
|
if (type_found == T_NSEC)
|
|
return prove_non_existence_nsec(header, plen, nsecset, nsecs_found, daemon->workspacename, keyname, name, qtype, nons);
|
|
else if (type_found == T_NSEC3)
|
|
return prove_non_existence_nsec3(header, plen, nsecset, nsecs_found, daemon->workspacename, keyname, name, qtype, wildname, nons);
|
|
else
|
|
return 0;
|
|
}
|
|
|
|
/* Check signing status of name.
|
|
returns:
|
|
STAT_SECURE zone is signed.
|
|
STAT_INSECURE zone proved unsigned.
|
|
STAT_NEED_DS require DS record of name returned in keyname.
|
|
STAT_NEED_KEY require DNSKEY record of name returned in keyname.
|
|
name returned unaltered.
|
|
*/
|
|
static int zone_status(char *name, int class, char *keyname, time_t now)
|
|
{
|
|
int name_start = strlen(name);
|
|
struct crec *crecp;
|
|
char *p;
|
|
|
|
while (1)
|
|
{
|
|
strcpy(keyname, &name[name_start]);
|
|
|
|
if (!(crecp = cache_find_by_name(NULL, keyname, now, F_DS)))
|
|
return STAT_NEED_DS;
|
|
|
|
/* F_DNSSECOK misused in DS cache records to non-existance of NS record.
|
|
F_NEG && !F_DNSSECOK implies that we've proved there's no DS record here,
|
|
but that's because there's no NS record either, ie this isn't the start
|
|
of a zone. We only prove that the DNS tree below a node is unsigned when
|
|
we prove that we're at a zone cut AND there's no DS record. */
|
|
if (crecp->flags & F_NEG)
|
|
{
|
|
if (crecp->flags & F_DNSSECOK)
|
|
return STAT_INSECURE; /* proved no DS here */
|
|
}
|
|
else
|
|
{
|
|
/* If all the DS records have digest and/or sig algos we don't support,
|
|
then the zone is insecure. Note that if an algo
|
|
appears in the DS, then RRSIGs for that algo MUST
|
|
exist for each RRset: 4035 para 2.2 So if we find
|
|
a DS here with digest and sig we can do, we're entitled
|
|
to assume we can validate the zone and if we can't later,
|
|
because an RRSIG is missing we return BOGUS.
|
|
*/
|
|
do
|
|
{
|
|
if (crecp->uid == (unsigned int)class &&
|
|
hash_find(ds_digest_name(crecp->addr.ds.digest)) &&
|
|
verify_func(crecp->addr.ds.algo))
|
|
break;
|
|
}
|
|
while ((crecp = cache_find_by_name(crecp, keyname, now, F_DS)));
|
|
|
|
if (!crecp)
|
|
return STAT_INSECURE;
|
|
}
|
|
|
|
if (name_start == 0)
|
|
break;
|
|
|
|
for (p = &name[name_start-2]; (*p != '.') && (p != name); p--);
|
|
|
|
if (p != name)
|
|
p++;
|
|
|
|
name_start = p - name;
|
|
}
|
|
|
|
return STAT_SECURE;
|
|
}
|
|
|
|
/* Validate all the RRsets in the answer and authority sections of the reply (4035:3.2.3)
|
|
Return code:
|
|
STAT_SECURE if it validates.
|
|
STAT_INSECURE at least one RRset not validated, because in unsigned zone.
|
|
STAT_BOGUS signature is wrong, bad packet, no validation where there should be.
|
|
STAT_NEED_KEY need DNSKEY to complete validation (name is returned in keyname, class in *class)
|
|
STAT_NEED_DS need DS to complete validation (name is returned in keyname)
|
|
*/
|
|
int dnssec_validate_reply(time_t now, struct dns_header *header, size_t plen, char *name, char *keyname,
|
|
int *class, int check_unsigned, int *neganswer, int *nons)
|
|
{
|
|
static unsigned char **targets = NULL;
|
|
static int target_sz = 0;
|
|
|
|
unsigned char *ans_start, *p1, *p2;
|
|
int type1, class1, rdlen1, type2, class2, rdlen2, qclass, qtype, targetidx;
|
|
int i, j, rc;
|
|
|
|
if (neganswer)
|
|
*neganswer = 0;
|
|
|
|
if (RCODE(header) == SERVFAIL || ntohs(header->qdcount) != 1)
|
|
return STAT_BOGUS;
|
|
|
|
if (RCODE(header) != NXDOMAIN && RCODE(header) != NOERROR)
|
|
return STAT_INSECURE;
|
|
|
|
p1 = (unsigned char *)(header+1);
|
|
|
|
/* Find all the targets we're looking for answers to.
|
|
The zeroth array element is for the query, subsequent ones
|
|
for CNAME targets, unless the query is for a CNAME. */
|
|
|
|
if (!expand_workspace(&targets, &target_sz, 0))
|
|
return STAT_BOGUS;
|
|
|
|
targets[0] = p1;
|
|
targetidx = 1;
|
|
|
|
if (!extract_name(header, plen, &p1, name, 1, 4))
|
|
return STAT_BOGUS;
|
|
|
|
GETSHORT(qtype, p1);
|
|
GETSHORT(qclass, p1);
|
|
ans_start = p1;
|
|
|
|
/* Can't validate an RRSIG query */
|
|
if (qtype == T_RRSIG)
|
|
return STAT_INSECURE;
|
|
|
|
if (qtype != T_CNAME)
|
|
for (j = ntohs(header->ancount); j != 0; j--)
|
|
{
|
|
if (!(p1 = skip_name(p1, header, plen, 10)))
|
|
return STAT_BOGUS; /* bad packet */
|
|
|
|
GETSHORT(type2, p1);
|
|
p1 += 6; /* class, TTL */
|
|
GETSHORT(rdlen2, p1);
|
|
|
|
if (type2 == T_CNAME)
|
|
{
|
|
if (!expand_workspace(&targets, &target_sz, targetidx))
|
|
return STAT_BOGUS;
|
|
|
|
targets[targetidx++] = p1; /* pointer to target name */
|
|
}
|
|
|
|
if (!ADD_RDLEN(header, p1, plen, rdlen2))
|
|
return STAT_BOGUS;
|
|
}
|
|
|
|
for (p1 = ans_start, i = 0; i < ntohs(header->ancount) + ntohs(header->nscount); i++)
|
|
{
|
|
if (!extract_name(header, plen, &p1, name, 1, 10))
|
|
return STAT_BOGUS; /* bad packet */
|
|
|
|
GETSHORT(type1, p1);
|
|
GETSHORT(class1, p1);
|
|
p1 += 4; /* TTL */
|
|
GETSHORT(rdlen1, p1);
|
|
|
|
/* Don't try and validate RRSIGs! */
|
|
if (type1 != T_RRSIG)
|
|
{
|
|
/* Check if we've done this RRset already */
|
|
for (p2 = ans_start, j = 0; j < i; j++)
|
|
{
|
|
if (!(rc = extract_name(header, plen, &p2, name, 0, 10)))
|
|
return STAT_BOGUS; /* bad packet */
|
|
|
|
GETSHORT(type2, p2);
|
|
GETSHORT(class2, p2);
|
|
p2 += 4; /* TTL */
|
|
GETSHORT(rdlen2, p2);
|
|
|
|
if (type2 == type1 && class2 == class1 && rc == 1)
|
|
break; /* Done it before: name, type, class all match. */
|
|
|
|
if (!ADD_RDLEN(header, p2, plen, rdlen2))
|
|
return STAT_BOGUS;
|
|
}
|
|
|
|
/* Not done, validate now */
|
|
if (j == i)
|
|
{
|
|
int sigcnt, rrcnt;
|
|
char *wildname;
|
|
|
|
if (!explore_rrset(header, plen, class1, type1, name, keyname, &sigcnt, &rrcnt))
|
|
return STAT_BOGUS;
|
|
|
|
/* No signatures for RRset. We can be configured to assume this is OK and return a INSECURE result. */
|
|
if (sigcnt == 0)
|
|
{
|
|
if (check_unsigned)
|
|
{
|
|
rc = zone_status(name, class1, keyname, now);
|
|
if (rc == STAT_SECURE)
|
|
rc = STAT_BOGUS;
|
|
if (class)
|
|
*class = class1; /* Class for NEED_DS or NEED_KEY */
|
|
}
|
|
else
|
|
rc = STAT_INSECURE;
|
|
|
|
return rc;
|
|
}
|
|
|
|
/* explore_rrset() gives us key name from sigs in keyname.
|
|
Can't overwrite name here. */
|
|
strcpy(daemon->workspacename, keyname);
|
|
rc = zone_status(daemon->workspacename, class1, keyname, now);
|
|
|
|
if (rc != STAT_SECURE)
|
|
{
|
|
/* Zone is insecure, don't need to validate RRset */
|
|
if (class)
|
|
*class = class1; /* Class for NEED_DS or NEED_KEY */
|
|
return rc;
|
|
}
|
|
|
|
rc = validate_rrset(now, header, plen, class1, type1, sigcnt, rrcnt, name, keyname, &wildname, NULL, 0, 0, 0);
|
|
|
|
if (rc == STAT_BOGUS || rc == STAT_NEED_KEY || rc == STAT_NEED_DS)
|
|
{
|
|
if (class)
|
|
*class = class1; /* Class for DS or DNSKEY */
|
|
return rc;
|
|
}
|
|
else
|
|
{
|
|
/* rc is now STAT_SECURE or STAT_SECURE_WILDCARD */
|
|
|
|
/* Note if we've validated either the answer to the question
|
|
or the target of a CNAME. Any not noted will need NSEC or
|
|
to be in unsigned space. */
|
|
|
|
for (j = 0; j <targetidx; j++)
|
|
if ((p2 = targets[j]))
|
|
{
|
|
if (!(rc = extract_name(header, plen, &p2, name, 0, 10)))
|
|
return STAT_BOGUS; /* bad packet */
|
|
|
|
if (class1 == qclass && rc == 1 && (type1 == T_CNAME || type1 == qtype || qtype == T_ANY ))
|
|
targets[j] = NULL;
|
|
}
|
|
|
|
/* An attacker replay a wildcard answer with a different
|
|
answer and overlay a genuine RR. To prove this
|
|
hasn't happened, the answer must prove that
|
|
the gennuine record doesn't exist. Check that here.
|
|
Note that we may not yet have validated the NSEC/NSEC3 RRsets.
|
|
That's not a problem since if the RRsets later fail
|
|
we'll return BOGUS then. */
|
|
if (rc == STAT_SECURE_WILDCARD && !prove_non_existence(header, plen, keyname, name, type1, class1, wildname, NULL))
|
|
return STAT_BOGUS;
|
|
}
|
|
}
|
|
}
|
|
|
|
if (!ADD_RDLEN(header, p1, plen, rdlen1))
|
|
return STAT_BOGUS;
|
|
}
|
|
|
|
/* OK, all the RRsets validate, now see if we have a missing answer or CNAME target. */
|
|
for (j = 0; j <targetidx; j++)
|
|
if ((p2 = targets[j]))
|
|
{
|
|
if (neganswer)
|
|
*neganswer = 1;
|
|
|
|
if (!extract_name(header, plen, &p2, name, 1, 10))
|
|
return STAT_BOGUS; /* bad packet */
|
|
|
|
/* NXDOMAIN or NODATA reply, unanswered question is (name, qclass, qtype) */
|
|
|
|
/* For anything other than a DS record, this situation is OK if either
|
|
the answer is in an unsigned zone, or there's a NSEC records. */
|
|
if (!prove_non_existence(header, plen, keyname, name, qtype, qclass, NULL, nons))
|
|
{
|
|
/* Empty DS without NSECS */
|
|
if (qtype == T_DS)
|
|
return STAT_BOGUS;
|
|
|
|
if ((rc = zone_status(name, qclass, keyname, now)) != STAT_SECURE)
|
|
{
|
|
if (class)
|
|
*class = qclass; /* Class for NEED_DS or NEED_KEY */
|
|
return rc;
|
|
}
|
|
|
|
return STAT_BOGUS; /* signed zone, no NSECs */
|
|
}
|
|
}
|
|
|
|
return STAT_SECURE;
|
|
}
|
|
|
|
|
|
/* Compute keytag (checksum to quickly index a key). See RFC4034 */
|
|
int dnskey_keytag(int alg, int flags, unsigned char *key, int keylen)
|
|
{
|
|
if (alg == 1)
|
|
{
|
|
/* Algorithm 1 (RSAMD5) has a different (older) keytag calculation algorithm.
|
|
See RFC4034, Appendix B.1 */
|
|
return key[keylen-4] * 256 + key[keylen-3];
|
|
}
|
|
else
|
|
{
|
|
unsigned long ac = flags + 0x300 + alg;
|
|
int i;
|
|
|
|
for (i = 0; i < keylen; ++i)
|
|
ac += (i & 1) ? key[i] : key[i] << 8;
|
|
|
|
ac += (ac >> 16) & 0xffff;
|
|
return ac & 0xffff;
|
|
}
|
|
}
|
|
|
|
size_t dnssec_generate_query(struct dns_header *header, unsigned char *end, char *name, int class,
|
|
int type, union mysockaddr *addr, int edns_pktsz)
|
|
{
|
|
unsigned char *p;
|
|
char *types = querystr("dnssec-query", type);
|
|
size_t ret;
|
|
|
|
if (addr->sa.sa_family == AF_INET)
|
|
log_query(F_NOEXTRA | F_DNSSEC | F_IPV4, name, (struct all_addr *)&addr->in.sin_addr, types);
|
|
#ifdef HAVE_IPV6
|
|
else
|
|
log_query(F_NOEXTRA | F_DNSSEC | F_IPV6, name, (struct all_addr *)&addr->in6.sin6_addr, types);
|
|
#endif
|
|
|
|
header->qdcount = htons(1);
|
|
header->ancount = htons(0);
|
|
header->nscount = htons(0);
|
|
header->arcount = htons(0);
|
|
|
|
header->hb3 = HB3_RD;
|
|
SET_OPCODE(header, QUERY);
|
|
/* For debugging, set Checking Disabled, otherwise, have the upstream check too,
|
|
this allows it to select auth servers when one is returning bad data. */
|
|
header->hb4 = option_bool(OPT_DNSSEC_DEBUG) ? HB4_CD : 0;
|
|
|
|
/* ID filled in later */
|
|
|
|
p = (unsigned char *)(header+1);
|
|
|
|
p = do_rfc1035_name(p, name);
|
|
*p++ = 0;
|
|
PUTSHORT(type, p);
|
|
PUTSHORT(class, p);
|
|
|
|
ret = add_do_bit(header, p - (unsigned char *)header, end);
|
|
|
|
if (find_pseudoheader(header, ret, NULL, &p, NULL, NULL))
|
|
PUTSHORT(edns_pktsz, p);
|
|
|
|
return ret;
|
|
}
|
|
|
|
unsigned char* hash_questions(struct dns_header *header, size_t plen, char *name)
|
|
{
|
|
int q;
|
|
unsigned int len;
|
|
unsigned char *p = (unsigned char *)(header+1);
|
|
const struct nettle_hash *hash;
|
|
void *ctx;
|
|
unsigned char *digest;
|
|
|
|
if (!(hash = hash_find("sha1")) || !hash_init(hash, &ctx, &digest))
|
|
return NULL;
|
|
|
|
for (q = ntohs(header->qdcount); q != 0; q--)
|
|
{
|
|
if (!extract_name(header, plen, &p, name, 1, 4))
|
|
break; /* bad packet */
|
|
|
|
len = to_wire(name);
|
|
hash->update(ctx, len, (unsigned char *)name);
|
|
/* CRC the class and type as well */
|
|
hash->update(ctx, 4, p);
|
|
|
|
p += 4;
|
|
if (!CHECK_LEN(header, p, plen, 0))
|
|
break; /* bad packet */
|
|
}
|
|
|
|
hash->digest(ctx, hash->digest_size, digest);
|
|
return digest;
|
|
}
|
|
|
|
#endif /* HAVE_DNSSEC */
|