// This file Copyright © Mnemosyne LLC. // It may be used under GPLv2 (SPDX: GPL-2.0-only), GPLv3 (SPDX: GPL-3.0-only), // or any future license endorsed by Mnemosyne LLC. // License text can be found in the licenses/ folder. #include // std::min #include #include #include #include #include #include #include #include #include "libtransmission/transmission.h" #include "libtransmission/api-compat.h" #include "libtransmission/bitfield.h" #include "libtransmission/error.h" #include "libtransmission/file.h" #include "libtransmission/log.h" #include "libtransmission/net.h" #include "libtransmission/peer-mgr.h" /* pex */ #include "libtransmission/quark.h" #include "libtransmission/resume.h" #include "libtransmission/session.h" #include "libtransmission/torrent-ctor.h" #include "libtransmission/torrent-metainfo.h" #include "libtransmission/torrent.h" #include "libtransmission/tr-assert.h" #include "libtransmission/utils.h" #include "libtransmission/variant.h" using namespace std::literals; using namespace libtransmission::Values; namespace tr_resume { namespace { constexpr auto MaxRememberedPeers = 200U; // --- void save_peers(tr_variant::Map& map, tr_torrent const* tor) { if (auto const pex = tr_peerMgrGetPeers(tor, TR_AF_INET, TR_PEERS_INTERESTING, MaxRememberedPeers); !std::empty(pex)) { map.insert_or_assign(TR_KEY_peers2, tr_pex::to_variant(std::data(pex), std::size(pex))); } if (auto const pex = tr_peerMgrGetPeers(tor, TR_AF_INET6, TR_PEERS_INTERESTING, MaxRememberedPeers); !std::empty(pex)) { map.insert_or_assign(TR_KEY_peers2_6, tr_pex::to_variant(std::data(pex), std::size(pex))); } } size_t add_peers(tr_torrent* tor, tr_variant::Vector const& l) { auto const n_pex = std::min(std::size(l), size_t{ MaxRememberedPeers }); auto const pex = tr_pex::from_variant(std::data(l), n_pex); return tr_peerMgrAddPex(tor, TR_PEER_FROM_RESUME, std::data(pex), std::size(pex)); } auto load_peers(tr_variant::Map const& map, tr_torrent* tor) { auto ret = tr_resume::fields_t{}; if (auto const* l = map.find_if(TR_KEY_peers2); l != nullptr) { auto const num_added = add_peers(tor, *l); tr_logAddTraceTor(tor, fmt::format("Loaded {} IPv4 peers from resume file", num_added)); ret = tr_resume::Peers; } if (auto const* l = map.find_if(TR_KEY_peers2_6)) { auto const num_added = add_peers(tor, *l); tr_logAddTraceTor(tor, fmt::format("Loaded {} IPv6 peers from resume file", num_added)); ret = tr_resume::Peers; } return ret; } // --- void save_labels(tr_variant::Map& map, tr_torrent const* tor) { auto const& labels = tor->labels(); auto list = tr_variant::Vector{}; list.reserve(std::size(labels)); for (auto const& label : labels) { list.emplace_back(tr_variant::unmanaged_string(label.sv())); } map.insert_or_assign(TR_KEY_labels, std::move(list)); } tr_resume::fields_t load_labels(tr_variant::Map const& map, tr_torrent* tor) { auto const* const list = map.find_if(TR_KEY_labels); if (list == nullptr) { return {}; } auto labels = tr_torrent::labels_t{}; labels.reserve(std::size(*list)); for (auto const& var : *list) { if (auto sv = var.value_if(); sv && !std::empty(*sv)) { labels.emplace_back(*sv); } } tor->set_labels(labels); return tr_resume::Labels; } // --- void save_group(tr_variant::Map& map, tr_torrent const* tor) { map.insert_or_assign(TR_KEY_group, tr_variant::unmanaged_string(tor->bandwidth_group())); } tr_resume::fields_t load_group(tr_variant::Map const& map, tr_torrent* tor) { if (auto const sv = map.value_if(TR_KEY_group); sv && !std::empty(*sv)) { tor->set_bandwidth_group(*sv); return tr_resume::Group; } return {}; } // --- void save_dnd(tr_variant::Map& map, tr_torrent const* tor) { auto const n = tor->file_count(); auto list = tr_variant::Vector{}; list.reserve(n); for (tr_file_index_t i = 0; i < n; ++i) { list.emplace_back(!tr_torrentFile(tor, i).wanted); } map.insert_or_assign(TR_KEY_dnd, std::move(list)); } tr_resume::fields_t load_dnd(tr_variant::Map const& map, tr_torrent* tor) { auto const* const list = map.find_if(TR_KEY_dnd); if (list == nullptr) { tr_logAddDebugTor(tor, "Couldn't load DND flags."); return {}; } auto const n = tor->file_count(); if (std::size(*list) != n) { tr_logAddDebugTor( tor, fmt::format( "Couldn't load DND flags. DND list {} has {} children; torrent has {} files", fmt::ptr(list), std::size(*list), n)); return {}; } auto wanted = std::vector{}; auto unwanted = std::vector{}; wanted.reserve(n); unwanted.reserve(n); for (tr_file_index_t i = 0; i < n; ++i) { if ((*list)[i].value_if().value_or(false)) { unwanted.push_back(i); } else { wanted.push_back(i); } } tor->init_files_wanted(std::data(unwanted), std::size(unwanted), false); tor->init_files_wanted(std::data(wanted), std::size(wanted), true); return tr_resume::Dnd; } // --- void save_file_priorities(tr_variant::Map& map, tr_torrent const* tor) { auto const n = tor->file_count(); auto list = tr_variant::Vector{}; list.reserve(n); for (tr_file_index_t i = 0; i < n; ++i) { list.emplace_back(tr_torrentFile(tor, i).priority); } map.insert_or_assign(TR_KEY_priority, std::move(list)); } tr_resume::fields_t load_file_priorities(tr_variant::Map const& map, tr_torrent* tor) { auto const* const list = map.find_if(TR_KEY_priority); auto const n = tor->file_count(); if (list == nullptr || std::size(*list) != n) { return {}; } for (tr_file_index_t i = 0; i < n; ++i) { if (auto const priority = (*list)[i].value_if(); priority) { tor->set_file_priority(i, static_cast(*priority)); } } return tr_resume::FilePriorities; } // --- tr_variant::Map save_single_speed_limit(tr_torrent const* tor, tr_direction dir) { auto map = tr_variant::Map{ 3 }; map.try_emplace(TR_KEY_speed_Bps, tor->speed_limit(dir).base_quantity()); map.try_emplace(TR_KEY_use_global_speed_limit, tor->uses_session_limits()); map.try_emplace(TR_KEY_use_speed_limit, tor->uses_speed_limit(dir)); return map; } void save_speed_limits(tr_variant::Map& map, tr_torrent const* tor) { map.insert_or_assign(TR_KEY_speed_limit_down, save_single_speed_limit(tor, TR_DOWN)); map.insert_or_assign(TR_KEY_speed_limit_up, save_single_speed_limit(tor, TR_UP)); } void save_ratio_limits(tr_variant::Map& map, tr_torrent const* tor) { auto d = tr_variant::Map{ 2 }; d.try_emplace(TR_KEY_ratio_limit, tor->seed_ratio()); d.try_emplace(TR_KEY_ratio_mode, tor->seed_ratio_mode()); map.insert_or_assign(TR_KEY_ratio_limit, std::move(d)); } void save_idle_limits(tr_variant::Map& map, tr_torrent const* tor) { auto d = tr_variant::Map{ 2 }; d.try_emplace(TR_KEY_idle_limit, tor->idle_limit_minutes()); d.try_emplace(TR_KEY_idle_mode, tor->idle_limit_mode()); map.insert_or_assign(TR_KEY_idle_limit, std::move(d)); } void load_single_speed_limit(tr_variant::Map const& map, tr_direction dir, tr_torrent* tor) { if (auto const i = map.value_if(TR_KEY_speed_Bps)) { tor->set_speed_limit(dir, Speed{ *i, Speed::Units::Byps }); } else if (auto const i2 = map.value_if(TR_KEY_speed); i2) { tor->set_speed_limit(dir, Speed{ *i2, Speed::Units::KByps }); } if (auto const b = map.value_if(TR_KEY_use_speed_limit)) { tor->use_speed_limit(dir, *b); } if (auto const b = map.value_if(TR_KEY_use_global_speed_limit)) { tr_torrentUseSessionLimits(tor, *b); } } auto load_speed_limits(tr_variant::Map const& map, tr_torrent* tor) { auto ret = tr_resume::fields_t{}; if (auto const* child = map.find_if(TR_KEY_speed_limit_up)) { load_single_speed_limit(*child, TR_UP, tor); ret = tr_resume::Speedlimit; } if (auto const* child = map.find_if(TR_KEY_speed_limit_down)) { load_single_speed_limit(*child, TR_DOWN, tor); ret = tr_resume::Speedlimit; } return ret; } tr_resume::fields_t load_ratio_limits(tr_variant::Map const& map, tr_torrent* tor) { auto const* const d = map.find_if(TR_KEY_ratio_limit); if (d == nullptr) { return {}; } if (auto const dratio = d->value_if(TR_KEY_ratio_limit)) { tor->set_seed_ratio(*dratio); } if (auto const i = d->value_if(TR_KEY_ratio_mode)) { tor->set_seed_ratio_mode(static_cast(*i)); } return tr_resume::Ratiolimit; } tr_resume::fields_t load_idle_limits(tr_variant::Map const& map, tr_torrent* tor) { auto const* const d = map.find_if(TR_KEY_idle_limit); if (d == nullptr) { return {}; } if (auto const imin = d->value_if(TR_KEY_idle_limit)) { tor->set_idle_limit_minutes(*imin); } if (auto const i = d->value_if(TR_KEY_idle_mode)) { tor->set_idle_limit_mode(static_cast(*i)); } return tr_resume::Idlelimit; } // --- void save_name(tr_variant::Map& map, tr_torrent const* tor) { map.insert_or_assign(TR_KEY_name, tr_variant::unmanaged_string(tor->name())); } tr_resume::fields_t load_name(tr_variant::Map const& map, tr_torrent* tor) { auto const o_name = map.value_if(TR_KEY_name); if (!o_name) { return {}; } auto const& name = tr_strv_strip(*o_name); if (std::empty(name)) { return {}; } tor->set_name(name); return tr_resume::Name; } // --- void save_filenames(tr_variant::Map& map, tr_torrent const* tor) { auto const n = tor->file_count(); auto list = tr_variant::Vector{}; list.reserve(n); for (tr_file_index_t i = 0; i < n; ++i) { list.emplace_back(tr_variant::unmanaged_string(tor->file_subpath(i))); } map.insert_or_assign(TR_KEY_files, std::move(list)); } tr_resume::fields_t load_filenames(tr_variant::Map const& map, tr_torrent* tor) { auto const* const list = map.find_if(TR_KEY_files); if (list == nullptr) { return {}; } auto const n_files = tor->file_count(); auto const n_list = std::size(*list); for (tr_file_index_t i = 0; i < n_files && i < n_list; ++i) { if (auto const sv = (*list)[i].value_if(); sv && !std::empty(*sv)) { tor->set_file_subpath(i, *sv); } } return tr_resume::Filenames; } // --- tr_variant bitfield_to_raw(tr_bitfield const& b) { if (b.has_none() || std::empty(b)) { return tr_variant::unmanaged_string("none"sv); } if (b.has_all()) { return tr_variant::unmanaged_string("all"sv); } return tr_variant::make_raw(b.raw()); } void raw_to_bitfield(tr_bitfield& bitfield, std::string_view const raw) { if (std::empty(raw) || raw == "none"sv) { bitfield.set_has_none(); } else if (raw == "all"sv) { bitfield.set_has_all(); } else { bitfield.set_raw(reinterpret_cast(std::data(raw)), std::size(raw)); } } void save_progress(tr_variant::Map& map, tr_torrent::ResumeHelper const& helper) { auto prog = tr_variant::Map{ 3 }; // add the mtimes auto const& mtimes = helper.file_mtimes(); auto const n = std::size(mtimes); auto l = tr_variant::Vector{}; l.reserve(n); for (auto const& mtime : mtimes) { l.emplace_back(mtime); } prog.try_emplace(TR_KEY_mtimes, std::move(l)); // add the 'checked pieces' bitfield prog.try_emplace(TR_KEY_pieces, bitfield_to_raw(helper.checked_pieces())); // add the blocks bitfield prog.try_emplace(TR_KEY_blocks, bitfield_to_raw(helper.blocks())); map.insert_or_assign(TR_KEY_progress, std::move(prog)); } /* * Transmission has iterated through a few strategies here, so the * code has some added complexity to support older approaches. * * Current approach: 'progress' is a dict with two entries: * - 'pieces' a bitfield for whether each piece has been checked. * - 'mtimes', an array of per-file timestamps * On startup, 'pieces' is loaded. Then we check to see if the disk * mtimes differ from the 'mtimes' list. Changed files have their * pieces cleared from the bitset. * * Second approach (2.20 - 3.00): the 'progress' dict had a * 'time_checked' entry which was a list with file_count items. * Each item was either a list of per-piece timestamps, or a * single timestamp if either all or none of the pieces had been * tested more recently than the file's mtime. * * First approach (pre-2.20) had an "mtimes" list identical to * the current approach, but not the 'pieces' bitfield. */ tr_resume::fields_t load_progress(tr_variant::Map const& map, tr_torrent* tor, tr_torrent::ResumeHelper& helper) { auto const* const prog = map.find_if(TR_KEY_progress); if (prog == nullptr) { return {}; } /// CHECKED PIECES auto checked = tr_bitfield{ tor->piece_count() }; auto mtimes = std::vector{}; auto const n_files = tor->file_count(); mtimes.reserve(n_files); // try to load mtimes if (auto const* l = prog->find_if(TR_KEY_mtimes); l != nullptr) { for (auto const& var : *l) { auto const t = var.value_if(); if (!t) { break; } mtimes.push_back(*t); } } // try to load the piece-checked bitfield if (auto const sv = prog->value_if(TR_KEY_pieces); sv) { raw_to_bitfield(checked, *sv); } // maybe it's a .resume file from [2.20 - 3.00] with the per-piece mtimes if (auto const* l = prog->find_if(TR_KEY_time_checked); l != nullptr) { for (tr_file_index_t fi = 0, n_l = std::min(n_files, std::size(*l)); fi < n_l; ++fi) { auto const& b = (*l)[fi]; auto time_checked = time_t{}; if (auto const t = b.value_if(); t) { time_checked = static_cast(*t); } else if (auto const* ll = b.get_if(); ll != nullptr) { // The first element (idx 0) stores a base value for all piece timestamps, // which would be the value of the smallest piece timestamp minus 1. // // The rest of the elements are the timestamp of each piece, stored as // an offset to the base value. // i.e. idx 1 <-> piece 0, idx 2 <-> piece 1, ... // timestamp of piece n = idx 0 + idx n+1 // // Pieces that haven't been checked will have a timestamp offset of 0. // They can be differentiated from the oldest checked piece(s) since the // offset for any checked pieces will be at least 1. auto const base = (*ll)[0].value_if().value_or(0); auto const [piece_begin, piece_end] = tor->piece_span_for_file(fi); auto const n_ll = std::size(*ll); auto const n_pieces = piece_end - piece_begin; time_checked = std::numeric_limits::max(); for (tr_piece_index_t i = 1; time_checked > time_t{} && i <= n_pieces && i < n_ll; ++i) { auto const offset = (*ll)[i].value_if().value_or(0); time_checked = std::min(time_checked, offset != 0 ? static_cast(base + offset) : time_t{}); } } mtimes.push_back(time_checked); } } if (std::size(mtimes) != n_files) { tr_logAddDebugTor(tor, fmt::format("Couldn't load mtimes: expected {} got {}", std::size(mtimes), n_files)); // if resizing grows the vector, we'll get 0 mtimes for the // new items which is exactly what we want since the pieces // in an unknown state should be treated as untested mtimes.resize(n_files); } helper.load_checked_pieces(checked, std::data(mtimes)); /// COMPLETION auto blocks = tr_bitfield{ tor->block_count() }; char const* err = nullptr; if (auto const b = prog->find(TR_KEY_blocks); b != std::end(*prog)) { if (auto const sv = b->second.value_if(); sv) { raw_to_bitfield(blocks, *sv); } else { err = "Invalid value for 'blocks'"; } } else if (auto const raw = prog->value_if(TR_KEY_bitfield); raw) { blocks.set_raw(reinterpret_cast(std::data(*raw)), std::size(*raw)); } else { err = "Couldn't find 'blocks' or 'bitfield'"; } if (err != nullptr) { tr_logAddDebugTor(tor, fmt::format("Torrent needs to be verified - {}", err)); } else { helper.load_blocks(blocks); } return tr_resume::Progress; } // --- tr_resume::fields_t load_from_file(tr_torrent* tor, tr_torrent::ResumeHelper& helper, tr_resume::fields_t fields_to_load) { TR_ASSERT(tr_isTorrent(tor)); tr_torrent_metainfo::migrate_file(tor->session->resumeDir(), tor->name(), tor->info_hash_string(), ".resume"sv); auto const filename = tor->resume_file(); auto benc = std::vector{}; if (!tr_sys_path_exists(filename) || !tr_file_read(filename, benc)) { return {}; } auto serde = tr_variant_serde::benc(); auto otop = serde.inplace().parse(benc); if (!otop) { tr_logAddDebugTor(tor, fmt::format("Couldn't read '{}': {}", filename, serde.error_.message())); return {}; } otop = libtransmission::api_compat::convert_incoming_data(*otop); auto const* const p_map = otop->get_if(); if (p_map == nullptr) { tr_logAddDebugTor(tor, fmt::format("Resume file '{}' does not contain a benc dict", filename)); return {}; } auto const& map = *p_map; tr_logAddDebugTor(tor, fmt::format("Read resume file '{}'", filename)); auto fields_loaded = tr_resume::fields_t{}; if ((fields_to_load & tr_resume::Corrupt) != 0) { if (auto i = map.value_if(TR_KEY_corrupt); i) { tor->bytes_corrupt_.set_prev(*i); fields_loaded |= tr_resume::Corrupt; } } if ((fields_to_load & (tr_resume::Progress | tr_resume::DownloadDir)) != 0) { if (auto sv = map.value_if(TR_KEY_destination); sv && !std::empty(*sv)) { helper.load_download_dir(*sv); fields_loaded |= tr_resume::DownloadDir; } } if ((fields_to_load & (tr_resume::Progress | tr_resume::IncompleteDir)) != 0) { if (auto sv = map.value_if(TR_KEY_incomplete_dir); sv && !std::empty(*sv)) { helper.load_incomplete_dir(*sv); fields_loaded |= tr_resume::IncompleteDir; } } if ((fields_to_load & tr_resume::Downloaded) != 0) { if (auto i = map.value_if(TR_KEY_downloaded); i) { tor->bytes_downloaded_.set_prev(*i); fields_loaded |= tr_resume::Downloaded; } } if ((fields_to_load & tr_resume::Uploaded) != 0) { if (auto i = map.value_if(TR_KEY_uploaded); i) { tor->bytes_uploaded_.set_prev(*i); fields_loaded |= tr_resume::Uploaded; } } if ((fields_to_load & tr_resume::MaxPeers) != 0) { if (auto const i = map.value_if(TR_KEY_max_peers)) { tor->set_peer_limit(static_cast(*i)); fields_loaded |= tr_resume::MaxPeers; } } if ((fields_to_load & tr_resume::Run) != 0) { if (auto b = map.value_if(TR_KEY_paused); b) { helper.load_start_when_stable(!*b); fields_loaded |= tr_resume::Run; } } if ((fields_to_load & tr_resume::AddedDate) != 0) { if (auto const i = map.value_if(TR_KEY_added_date)) { helper.load_date_added(static_cast(*i)); fields_loaded |= tr_resume::AddedDate; } } if ((fields_to_load & tr_resume::DoneDate) != 0) { if (auto const i = map.value_if(TR_KEY_done_date)) { helper.load_date_done(static_cast(*i)); fields_loaded |= tr_resume::DoneDate; } } if ((fields_to_load & tr_resume::ActivityDate) != 0) { if (auto const i = map.value_if(TR_KEY_activity_date)) { tor->set_date_active(*i); fields_loaded |= tr_resume::ActivityDate; } } if ((fields_to_load & tr_resume::TimeSeeding) != 0) { if (auto const i = map.value_if(TR_KEY_seeding_time_seconds)) { helper.load_seconds_seeding_before_current_start(*i); fields_loaded |= tr_resume::TimeSeeding; } } if ((fields_to_load & tr_resume::TimeDownloading) != 0) { if (auto const i = map.value_if(TR_KEY_downloading_time_seconds)) { helper.load_seconds_downloading_before_current_start(*i); fields_loaded |= tr_resume::TimeDownloading; } } if ((fields_to_load & tr_resume::BandwidthPriority) != 0) { if (auto const i = map.value_if(TR_KEY_bandwidth_priority); i && tr_isPriority(static_cast(*i))) { tr_torrentSetPriority(tor, static_cast(*i)); fields_loaded |= tr_resume::BandwidthPriority; } } if ((fields_to_load & tr_resume::SequentialDownload) != 0) { if (auto b = map.value_if(TR_KEY_sequential_download); b) { tor->set_sequential_download(*b); fields_loaded |= tr_resume::SequentialDownload; } } if ((fields_to_load & tr_resume::SequentialDownloadFromPiece) != 0) { if (auto i = map.value_if(TR_KEY_sequential_download_from_piece); i) { tor->set_sequential_download_from_piece(*i); fields_loaded |= tr_resume::SequentialDownloadFromPiece; } } if ((fields_to_load & tr_resume::Peers) != 0) { fields_loaded |= load_peers(map, tor); } // Note: load_filenames() must come before load_progress() // so that load_progress() -> helper.load_checked_pieces() -> tor_.find_file() // will know where to look if ((fields_to_load & tr_resume::Filenames) != 0) { fields_loaded |= load_filenames(map, tor); } // Note: load_progress() should come before load_file_priorities() // so that we can skip loading priorities iff the torrent is a // seed or a partial seed. if ((fields_to_load & tr_resume::Progress) != 0) { fields_loaded |= load_progress(map, tor, helper); } if (!tor->is_done() && (fields_to_load & tr_resume::FilePriorities) != 0) { fields_loaded |= load_file_priorities(map, tor); } if ((fields_to_load & tr_resume::Dnd) != 0) { fields_loaded |= load_dnd(map, tor); } if ((fields_to_load & tr_resume::Speedlimit) != 0) { fields_loaded |= load_speed_limits(map, tor); } if ((fields_to_load & tr_resume::Ratiolimit) != 0) { fields_loaded |= load_ratio_limits(map, tor); } if ((fields_to_load & tr_resume::Idlelimit) != 0) { fields_loaded |= load_idle_limits(map, tor); } if ((fields_to_load & tr_resume::Name) != 0) { fields_loaded |= load_name(map, tor); } if ((fields_to_load & tr_resume::Labels) != 0) { fields_loaded |= load_labels(map, tor); } if ((fields_to_load & tr_resume::Group) != 0) { fields_loaded |= load_group(map, tor); } return fields_loaded; } auto set_from_ctor( tr_torrent* tor, tr_torrent::ResumeHelper& helper, tr_resume::fields_t const fields, tr_ctor const& ctor, tr_ctorMode const mode) { auto ret = tr_resume::fields_t{}; if ((fields & tr_resume::Run) != 0) { if (auto const val = ctor.paused(mode); val) { helper.load_start_when_stable(!*val); ret |= tr_resume::Run; } } if ((fields & tr_resume::MaxPeers) != 0) { if (auto const val = ctor.peer_limit(mode); val) { tor->set_peer_limit(*val); ret |= tr_resume::MaxPeers; } } if ((fields & tr_resume::DownloadDir) != 0) { if (auto const& val = ctor.download_dir(mode); !std::empty(val)) { helper.load_download_dir(val); ret |= tr_resume::DownloadDir; } } if ((fields & tr_resume::SequentialDownload) != 0) { if (auto const& val = ctor.sequential_download(mode); val) { tor->set_sequential_download(*val); ret |= tr_resume::SequentialDownload; } } if ((fields & tr_resume::SequentialDownloadFromPiece) != 0) { if (auto const& val = ctor.sequential_download_from_piece(mode); val) { tor->set_sequential_download_from_piece(*val); ret |= tr_resume::SequentialDownloadFromPiece; } } return ret; } auto use_mandatory_fields( tr_torrent* const tor, tr_torrent::ResumeHelper& helper, tr_resume::fields_t const fields, tr_ctor const& ctor) { return set_from_ctor(tor, helper, fields, ctor, TR_FORCE); } auto use_fallback_fields( tr_torrent* const tor, tr_torrent::ResumeHelper& helper, tr_resume::fields_t const fields, tr_ctor const& ctor) { return set_from_ctor(tor, helper, fields, ctor, TR_FALLBACK); } } // namespace fields_t load(tr_torrent* tor, tr_torrent::ResumeHelper& helper, fields_t fields_to_load, tr_ctor const& ctor) { TR_ASSERT(tr_isTorrent(tor)); auto ret = fields_t{}; ret |= use_mandatory_fields(tor, helper, fields_to_load, ctor); fields_to_load &= ~ret; ret |= load_from_file(tor, helper, fields_to_load); fields_to_load &= ~ret; ret |= use_fallback_fields(tor, helper, fields_to_load, ctor); return ret; } void save(tr_torrent* const tor, tr_torrent::ResumeHelper const& helper) { if (!tr_isTorrent(tor)) { return; } auto map = tr_variant::Map{ 50 }; // arbitrary "big enough" number auto const now = tr_time(); map.try_emplace(TR_KEY_seeding_time_seconds, helper.seconds_seeding(now)); map.try_emplace(TR_KEY_downloading_time_seconds, helper.seconds_downloading(now)); map.try_emplace(TR_KEY_activity_date, helper.date_active()); map.try_emplace(TR_KEY_added_date, helper.date_added()); map.try_emplace(TR_KEY_corrupt, tor->bytes_corrupt_.ever()); map.try_emplace(TR_KEY_done_date, helper.date_done()); map.try_emplace(TR_KEY_destination, tr_variant::unmanaged_string(tor->download_dir().sv())); if (!std::empty(tor->incomplete_dir())) { map.try_emplace(TR_KEY_incomplete_dir, tr_variant::unmanaged_string(tor->incomplete_dir().sv())); } map.try_emplace(TR_KEY_downloaded, tor->bytes_downloaded_.ever()); map.try_emplace(TR_KEY_uploaded, tor->bytes_uploaded_.ever()); map.try_emplace(TR_KEY_max_peers, tor->peer_limit()); map.try_emplace(TR_KEY_bandwidth_priority, tor->get_priority()); map.try_emplace(TR_KEY_paused, !helper.start_when_stable()); map.try_emplace(TR_KEY_sequential_download, tor->is_sequential_download()); map.try_emplace(TR_KEY_sequential_download_from_piece, tor->sequential_download_from_piece()); save_peers(map, tor); if (tor->has_metainfo()) { save_file_priorities(map, tor); save_dnd(map, tor); save_progress(map, helper); } save_speed_limits(map, tor); save_ratio_limits(map, tor); save_idle_limits(map, tor); save_filenames(map, tor); save_name(map, tor); save_labels(map, tor); save_group(map, tor); auto const out = libtransmission::api_compat::convert_outgoing_data(std::move(map)); auto serde = tr_variant_serde::benc(); if (!serde.to_file(out, tor->resume_file())) { tor->error().set_local_error(fmt::format("Unable to save resume file: {:s}", serde.error_.message())); } } } // namespace tr_resume