Files
transmission/libtransmission/net.cc
Yat Ho 9dd9aab902 build: bump clang tools to 20 (#7573)
* build: bump to clang-format-20

* build: bump to clang-tidy-20

* chore: revert edc59ba5d8
2025-12-01 23:18:02 -06:00

775 lines
23 KiB
C++

// This file Copyright © Transmission authors and contributors.
// It may be used under the MIT (SPDX: MIT) license.
// License text can be found in the licenses/ folder.
#include <algorithm>
#include <array>
#include <cerrno>
#include <climits>
#include <cstddef>
#include <cstdint>
#include <cstring>
#include <iterator> // std::back_inserter
#include <optional>
#include <string>
#include <string_view>
#include <utility> // std::pair
#ifdef _WIN32
#include <winsock2.h> // must come before iphlpapi.h
#include <iphlpapi.h>
#include <ws2tcpip.h>
#else
#include <ifaddrs.h>
#include <net/if.h>
#include <netinet/tcp.h> /* TCP_CONGESTION */
#endif
#include <event2/util.h>
#include <fmt/format.h>
#include "libtransmission/log.h"
#include "libtransmission/net.h"
#include "libtransmission/peer-socket.h"
#include "libtransmission/session.h"
#include "libtransmission/tr-assert.h"
#include "libtransmission/tr-macros.h"
#include "libtransmission/tr-strbuf.h"
#include "libtransmission/utils.h"
using namespace std::literals;
std::string tr_net_strerror(int err)
{
#ifdef _WIN32
auto buf = std::array<char, 512>{};
(void)FormatMessageA(FORMAT_MESSAGE_FROM_SYSTEM, nullptr, err, 0, std::data(buf), std::size(buf), nullptr);
return std::string{ tr_strv_strip(std::data(buf)) };
#else
return std::string{ tr_strerror(err) };
#endif
}
std::string_view tr_ip_protocol_to_sv(tr_address_type type)
{
using namespace std::literals;
switch (type)
{
case TR_AF_INET:
return "IPv4"sv;
case TR_AF_INET6:
return "IPv6"sv;
default:
TR_ASSERT_MSG(false, "invalid address family");
return {};
}
}
int tr_ip_protocol_to_af(tr_address_type type)
{
switch (type)
{
case TR_AF_INET:
return AF_INET;
case TR_AF_INET6:
return AF_INET6;
default:
TR_ASSERT_MSG(false, "invalid address family");
return {};
}
}
tr_address_type tr_af_to_ip_protocol(int af)
{
switch (af)
{
case AF_INET:
return TR_AF_INET;
case AF_INET6:
return TR_AF_INET6;
default:
TR_ASSERT_MSG(false, "invalid address family");
return NUM_TR_AF_INET_TYPES;
}
}
int tr_make_listen_socket_ipv6only(tr_socket_t const sock)
{
#if defined(IPV6_V6ONLY)
int optval = 1;
return setsockopt(sock, IPPROTO_IPV6, IPV6_V6ONLY, reinterpret_cast<char const*>(&optval), sizeof(optval));
#else
return 0;
#endif
}
// - TCP Sockets
[[nodiscard]] std::optional<tr_tos_t> tr_tos_t::from_string(std::string_view name)
{
auto const needle = tr_strlower(tr_strv_strip(name));
for (auto const& [value, key] : Names)
{
if (needle == key)
{
return tr_tos_t(value);
}
}
if (auto value = tr_num_parse<int>(needle); value)
{
return tr_tos_t(*value);
}
return {};
}
std::string tr_tos_t::toString() const
{
for (auto const& [value, key] : Names)
{
if (value_ == value)
{
return std::string{ key };
}
}
return std::to_string(value_);
}
void tr_netSetTOS([[maybe_unused]] tr_socket_t s, [[maybe_unused]] int tos, tr_address_type type)
{
if (s == TR_BAD_SOCKET)
{
return;
}
if (type == TR_AF_INET)
{
#if defined(IP_TOS) && !defined(_WIN32)
if (setsockopt(s, IPPROTO_IP, IP_TOS, (void const*)&tos, sizeof(tos)) == -1)
{
tr_logAddDebug(fmt::format("Can't set TOS '{}': {}", tos, tr_net_strerror(sockerrno)));
}
#endif
}
else if (type == TR_AF_INET6)
{
#if defined(IPV6_TCLASS) && !defined(_WIN32)
if (setsockopt(s, IPPROTO_IPV6, IPV6_TCLASS, (void const*)&tos, sizeof(tos)) == -1)
{
tr_logAddDebug(fmt::format("Can't set IPv6 QoS '{}': {}", tos, tr_net_strerror(sockerrno)));
}
#endif
}
else
{
/* program should never reach here! */
tr_logAddDebug("Something goes wrong while setting TOS/Traffic-Class");
}
}
void tr_netSetCongestionControl([[maybe_unused]] tr_socket_t s, [[maybe_unused]] char const* algorithm)
{
#ifdef TCP_CONGESTION
if (setsockopt(s, IPPROTO_TCP, TCP_CONGESTION, (void const*)algorithm, strlen(algorithm) + 1) == -1)
{
tr_logAddDebug(fmt::format("Can't set congestion control algorithm '{}': {}", algorithm, tr_net_strerror(sockerrno)));
}
#endif
}
namespace
{
tr_socket_t createSocket(int domain, int type)
{
auto const sockfd = socket(domain, type, 0);
if (sockfd == TR_BAD_SOCKET)
{
if (sockerrno != EAFNOSUPPORT)
{
tr_logAddWarn(
fmt::format(
fmt::runtime(_("Couldn't create socket: {error} ({error_code})")),
fmt::arg("error", tr_net_strerror(sockerrno)),
fmt::arg("error_code", sockerrno)));
}
return TR_BAD_SOCKET;
}
if (evutil_make_socket_nonblocking(sockfd) == -1)
{
tr_net_close_socket(sockfd);
return TR_BAD_SOCKET;
}
if (static bool buf_logged = false; !buf_logged)
{
int i = 0;
socklen_t size = sizeof(i);
if (getsockopt(sockfd, SOL_SOCKET, SO_SNDBUF, reinterpret_cast<char*>(&i), &size) != -1)
{
tr_logAddTrace(fmt::format("SO_SNDBUF size is {}", i));
}
i = 0;
size = sizeof(i);
if (getsockopt(sockfd, SOL_SOCKET, SO_RCVBUF, reinterpret_cast<char*>(&i), &size) != -1)
{
tr_logAddTrace(fmt::format("SO_RCVBUF size is {}", i));
}
buf_logged = true;
}
return sockfd;
}
} // namespace
tr_socket_t tr_net_open_peer_socket(tr_session* session, tr_socket_address const& socket_address, bool client_is_seed)
{
auto const& [addr, port] = socket_address;
TR_ASSERT(addr.is_valid());
if (!session->allowsTCP() || !socket_address.is_valid())
{
return TR_BAD_SOCKET;
}
auto const s = createSocket(tr_ip_protocol_to_af(addr.type), SOCK_STREAM);
if (s == TR_BAD_SOCKET)
{
return TR_BAD_SOCKET;
}
// seeds don't need a big read buffer, so make it smaller
if (client_is_seed)
{
int n = 8192;
if (setsockopt(s, SOL_SOCKET, SO_RCVBUF, reinterpret_cast<char const*>(&n), sizeof(n)) == -1)
{
tr_logAddDebug(fmt::format("Unable to set SO_RCVBUF on socket {}: {}", s, tr_net_strerror(sockerrno)));
}
}
auto const [sock, addrlen] = socket_address.to_sockaddr();
// set source address
auto const source_addr = session->bind_address(addr.type);
auto const [source_sock, sourcelen] = tr_socket_address::to_sockaddr(source_addr, {});
if (bind(s, reinterpret_cast<sockaddr const*>(&source_sock), sourcelen) == -1)
{
tr_logAddWarn(
fmt::format(
fmt::runtime(_("Couldn't set source address {address} on {socket}: {error} ({error_code})")),
fmt::arg("address", source_addr.display_name()),
fmt::arg("socket", s),
fmt::arg("error", tr_net_strerror(sockerrno)),
fmt::arg("error_code", sockerrno)));
tr_net_close_socket(s);
return TR_BAD_SOCKET;
}
if (connect(s, reinterpret_cast<sockaddr const*>(&sock), addrlen) == -1 &&
#ifdef _WIN32
sockerrno != WSAEWOULDBLOCK &&
#endif
sockerrno != EINPROGRESS)
{
if (auto const tmperrno = sockerrno;
(tmperrno != ECONNREFUSED && tmperrno != ENETUNREACH && tmperrno != EHOSTUNREACH) || addr.is_ipv4())
{
tr_logAddWarn(
fmt::format(
fmt::runtime(_("Couldn't connect socket {socket} to {address}:{port}: {error} ({error_code})")),
fmt::arg("socket", s),
fmt::arg("address", addr.display_name()),
fmt::arg("port", port.host()),
fmt::arg("error", tr_net_strerror(tmperrno)),
fmt::arg("error_code", tmperrno)));
}
tr_net_close_socket(s);
return TR_BAD_SOCKET;
}
tr_logAddTrace(fmt::format("New OUTGOING connection {} ({})", s, socket_address.display_name()));
return s;
}
namespace
{
tr_socket_t tr_netBindTCPImpl(tr_address const& addr, tr_port port, bool suppress_msgs, int* err_out)
{
TR_ASSERT(addr.is_valid());
auto const fd = socket(tr_ip_protocol_to_af(addr.type), SOCK_STREAM, 0);
if (fd == TR_BAD_SOCKET)
{
*err_out = sockerrno;
return TR_BAD_SOCKET;
}
if (evutil_make_socket_nonblocking(fd) == -1)
{
*err_out = sockerrno;
tr_net_close_socket(fd);
return TR_BAD_SOCKET;
}
int optval = 1;
(void)setsockopt(fd, SOL_SOCKET, SO_KEEPALIVE, reinterpret_cast<char const*>(&optval), sizeof(optval));
(void)evutil_make_listen_socket_reuseable(fd);
if (addr.is_ipv6() && tr_make_listen_socket_ipv6only(fd) == -1 &&
sockerrno != ENOPROTOOPT) // if the kernel doesn't support it, ignore it
{
*err_out = sockerrno;
tr_net_close_socket(fd);
return TR_BAD_SOCKET;
}
auto const [sock, addrlen] = tr_socket_address::to_sockaddr(addr, port);
if (bind(fd, reinterpret_cast<sockaddr const*>(&sock), addrlen) == -1)
{
int const err = sockerrno;
if (!suppress_msgs)
{
tr_logAddError(
fmt::format(
fmt::runtime(
err == EADDRINUSE ?
_("Couldn't bind port {port} on {address}: {error} ({error_code}) -- Is another copy of Transmission already running?") :
_("Couldn't bind port {port} on {address}: {error} ({error_code})")),
fmt::arg("address", addr.display_name()),
fmt::arg("port", port.host()),
fmt::arg("error", tr_net_strerror(err)),
fmt::arg("error_code", err)));
}
tr_net_close_socket(fd);
*err_out = err;
return TR_BAD_SOCKET;
}
if (!suppress_msgs)
{
tr_logAddDebug(fmt::format("Bound socket {:d} to port {:d} on {:s}", fd, port.host(), addr.display_name()));
}
#ifdef TCP_FASTOPEN
#ifndef SOL_TCP
#define SOL_TCP IPPROTO_TCP
#endif
optval = 5;
(void)setsockopt(fd, SOL_TCP, TCP_FASTOPEN, reinterpret_cast<char const*>(&optval), sizeof(optval));
#endif
#ifdef _WIN32
if (listen(fd, SOMAXCONN) == -1)
#else /* _WIN32 */
/* Listen queue backlog will be capped to the operating system's limit. */
if (listen(fd, INT_MAX) == -1)
#endif /* _WIN32 */
{
*err_out = sockerrno;
tr_net_close_socket(fd);
return TR_BAD_SOCKET;
}
return fd;
}
} // namespace
tr_socket_t tr_netBindTCP(tr_address const& addr, tr_port port, bool suppress_msgs)
{
int unused = 0;
return tr_netBindTCPImpl(addr, port, suppress_msgs, &unused);
}
std::optional<std::pair<tr_socket_address, tr_socket_t>> tr_netAccept(tr_session* session, tr_socket_t listening_sockfd)
{
TR_ASSERT(session != nullptr);
// accept the incoming connection
auto sock = sockaddr_storage{};
socklen_t len = sizeof(struct sockaddr_storage);
auto const sockfd = accept(listening_sockfd, reinterpret_cast<sockaddr*>(&sock), &len);
if (sockfd == TR_BAD_SOCKET)
{
return {};
}
// get the address and port,
// make the socket unblocking,
// and confirm we don't have too many peers
auto const addrport = tr_socket_address::from_sockaddr(reinterpret_cast<struct sockaddr*>(&sock));
if (!addrport || evutil_make_socket_nonblocking(sockfd) == -1 || tr_peer_socket::limit_reached(session))
{
tr_net_close_socket(sockfd);
return {};
}
return std::pair{ *addrport, sockfd };
}
void tr_net_close_socket(tr_socket_t sockfd)
{
evutil_closesocket(sockfd);
}
// ---
namespace
{
namespace is_valid_for_peers_helpers
{
/* isMartianAddr was written by Juliusz Chroboczek,
and is covered under the same license as third-party/dht/dht.c. */
[[nodiscard]] auto is_martian_addr(tr_address const& addr, tr_peer_from from)
{
auto const loopback_allowed = from == TR_PEER_FROM_INCOMING || from == TR_PEER_FROM_LPD || from == TR_PEER_FROM_RESUME;
return addr.is_ipv4_current_network() || addr.is_ipv6_unspecified() ||
(!loopback_allowed && (addr.is_ipv4_loopback() || addr.is_ipv6_loopback())) || addr.is_ipv4_multicast() ||
addr.is_ipv6_multicast();
}
} // namespace is_valid_for_peers_helpers
} // namespace
// --- tr_port
std::pair<tr_port, std::byte const*> tr_port::from_compact(std::byte const* compact) noexcept
{
static auto constexpr PortLen = size_t{ 2 };
static_assert(PortLen == sizeof(uint16_t));
auto nport = uint16_t{};
std::copy_n(compact, PortLen, reinterpret_cast<std::byte*>(&nport));
compact += PortLen;
return std::make_pair(tr_port::from_network(nport), compact);
}
// --- tr_address
std::optional<tr_address> tr_address::from_string(std::string_view address_sv)
{
auto const address_sz = tr_strbuf<char, TrAddrStrlen>{ address_sv };
auto ss = sockaddr_storage{};
auto sslen = int{ sizeof(ss) };
if (evutil_parse_sockaddr_port(address_sz, reinterpret_cast<sockaddr*>(&ss), &sslen) != 0)
{
return {};
}
auto addr = tr_address{};
switch (ss.ss_family)
{
case AF_INET:
addr.addr.addr4 = reinterpret_cast<sockaddr_in*>(&ss)->sin_addr;
addr.type = TR_AF_INET;
return addr;
case AF_INET6:
addr.addr.addr6 = reinterpret_cast<sockaddr_in6*>(&ss)->sin6_addr;
addr.type = TR_AF_INET6;
return addr;
default:
return {};
}
}
std::string_view tr_address::display_name(char* out, size_t outlen) const
{
TR_ASSERT(is_valid());
if (auto* name = evutil_inet_ntop(tr_ip_protocol_to_af(type), &addr, out, outlen))
{
return name;
}
return "Invalid address"sv;
}
[[nodiscard]] std::string tr_address::display_name() const
{
auto buf = std::array<char, std::max(INET_ADDRSTRLEN, INET6_ADDRSTRLEN)>{};
return std::string{ display_name(std::data(buf), std::size(buf)) };
}
std::pair<tr_address, std::byte const*> tr_address::from_compact_ipv4(std::byte const* compact) noexcept
{
static auto constexpr Addr4Len = tr_address::CompactAddrBytes[TR_AF_INET];
auto address = tr_address{};
static_assert(sizeof(address.addr.addr4) == Addr4Len);
address.type = TR_AF_INET;
std::copy_n(compact, Addr4Len, reinterpret_cast<std::byte*>(&address.addr));
compact += Addr4Len;
return { address, compact };
}
std::pair<tr_address, std::byte const*> tr_address::from_compact_ipv6(std::byte const* compact) noexcept
{
static auto constexpr Addr6Len = tr_address::CompactAddrBytes[TR_AF_INET6];
auto address = tr_address{};
address.type = TR_AF_INET6;
std::copy_n(compact, Addr6Len, reinterpret_cast<std::byte*>(&address.addr.addr6.s6_addr));
compact += Addr6Len;
return { address, compact };
}
std::optional<unsigned> tr_address::to_interface_index() const noexcept
{
if (!is_valid())
{
tr_logAddDebug("Invalid target address to find interface index");
return {};
}
tr_logAddDebug(fmt::format("Find interface index for {}", display_name()));
#ifdef _WIN32
auto p_addresses = std::unique_ptr<void, void (*)(void*)>{ nullptr, operator delete };
// The recommended method of calling the GetAdaptersAddresses function is to
// pre-allocate a 15KB working buffer pointed to by the AdapterAddresses parameter.
// On typical computers, this dramatically reduces the chances that the
// GetAdaptersAddresses function returns ERROR_BUFFER_OVERFLOW, which would require
// calling GetAdaptersAddresses function multiple times.
// https://learn.microsoft.com/en-us/windows/win32/api/iphlpapi/nf-iphlpapi-getadaptersaddresses
for (auto p_addresses_size = ULONG{ 15000 } /* 15KB */;;)
{
p_addresses.reset(operator new(p_addresses_size, std::nothrow));
if (!p_addresses)
{
tr_logAddDebug("Could not allocate memory for interface list");
return {};
}
if (auto ret = GetAdaptersAddresses(
AF_UNSPEC,
GAA_FLAG_SKIP_FRIENDLY_NAME,
nullptr,
reinterpret_cast<PIP_ADAPTER_ADDRESSES>(p_addresses.get()),
&p_addresses_size);
ret != ERROR_BUFFER_OVERFLOW)
{
if (ret != ERROR_SUCCESS)
{
tr_logAddDebug(fmt::format("Failed to retrieve interface list: {} ({})", ret, tr_win32_format_message(ret)));
return {};
}
break;
}
}
for (auto const* cur = reinterpret_cast<PIP_ADAPTER_ADDRESSES>(p_addresses.get()); cur != nullptr; cur = cur->Next)
{
if (cur->OperStatus != IfOperStatusUp)
{
continue;
}
for (auto const* sa_p = cur->FirstUnicastAddress; sa_p != nullptr; sa_p = sa_p->Next)
{
if (auto if_addr = tr_socket_address::from_sockaddr(sa_p->Address.lpSockaddr);
if_addr && if_addr->address() == *this)
{
auto const ret = type == TR_AF_INET ? cur->IfIndex : cur->Ipv6IfIndex;
tr_logAddDebug(fmt::format("Found interface index for {}: {}", display_name(), ret));
return ret;
}
}
}
#else
struct ifaddrs* ifa = nullptr;
if (getifaddrs(&ifa) != 0)
{
auto err = errno;
tr_logAddDebug(fmt::format("Failed to retrieve interface list: {} ({})", err, tr_strerror(err)));
return {};
}
auto const ifa_uniq = std::unique_ptr<ifaddrs, void (*)(struct ifaddrs*)>{ ifa, freeifaddrs };
for (; ifa != nullptr; ifa = ifa->ifa_next)
{
if (ifa->ifa_addr == nullptr || (ifa->ifa_flags & IFF_UP) == 0U)
{
continue;
}
if (auto if_addr = tr_socket_address::from_sockaddr(ifa->ifa_addr); if_addr && if_addr->address() == *this)
{
auto const ret = if_nametoindex(ifa->ifa_name);
tr_logAddDebug(fmt::format("Found interface index for {}: {}", display_name(), ret));
return ret;
}
}
#endif
tr_logAddDebug(fmt::format("Could not find interface index for {}", display_name()));
return {};
}
int tr_address::compare(tr_address const& that) const noexcept // <=>
{
// IPv6 addresses are always "greater than" IPv4
if (auto const val = tr_compare_3way(this->type, that.type); val != 0)
{
return val;
}
return this->is_ipv4() ? memcmp(&this->addr.addr4, &that.addr.addr4, sizeof(this->addr.addr4)) :
memcmp(&this->addr.addr6.s6_addr, &that.addr.addr6.s6_addr, sizeof(this->addr.addr6.s6_addr));
}
// https://en.wikipedia.org/wiki/Reserved_IP_addresses
//
// https://www.rfc-editor.org/rfc/rfc4291.html#section-2.4
// address type Binary prefix IPv6 notation Section
// ------------ ------------- ------------- -------
// Unspecified 00...0 (128 bits) ::/128 2.5.2
// Loopback 00...1 (128 bits) ::1/128 2.5.3
// Multicast 11111111 FF00::/8 2.7
// Link-Local unicast 1111111010 FE80::/10 2.5.6
// Global Unicast (everything else)
[[nodiscard]] bool tr_address::is_global_unicast() const noexcept
{
return !is_ipv4_current_network() && //
!is_ipv4_10_private() && //
!is_ipv4_carrier_grade_nat() && //
!is_ipv4_loopback() && //
!is_ipv4_link_local() && //
!is_ipv4_172_private() && //
!is_ipv4_ietf_protocol_assignment() && //
!is_ipv4_test_net_1() && //
!is_ipv4_6to4_relay() && //
!is_ipv4_192_168_private() && //
!is_ipv4_benchmark() && //
!is_ipv4_test_net_2() && //
!is_ipv4_test_net_3() && //
!is_ipv4_multicast() && //
!is_ipv4_mcast_test_net() && //
!is_ipv4_reserved_class_e() && //
!is_ipv4_limited_broadcast() && //
!is_ipv6_unspecified() && //
!is_ipv6_loopback() && //
!is_ipv6_multicast() && //
!is_ipv6_link_local();
}
std::optional<tr_address> tr_address::from_ipv4_mapped() const noexcept
{
if (!is_ipv6_ipv4_mapped())
{
return {};
}
return from_compact_ipv4(reinterpret_cast<std::byte const*>(&addr.addr6.s6_addr) + 12).first;
}
// --- tr_socket_addrses
std::string tr_socket_address::display_name(tr_address const& address, tr_port port) noexcept
{
return fmt::format(fmt::runtime(address.is_ipv6() ? "[{:s}]:{:d}" : "{:s}:{:d}"), address.display_name(), port.host());
}
bool tr_socket_address::is_valid_for_peers(tr_peer_from from) const noexcept
{
using namespace is_valid_for_peers_helpers;
return is_valid() && !std::empty(port_) && !address_.is_ipv6_link_local() && !address_.is_ipv6_ipv4_mapped() &&
!is_martian_addr(address_, from);
}
std::optional<tr_socket_address> tr_socket_address::from_string(std::string_view sockaddr_sv)
{
auto ss = sockaddr_storage{};
auto sslen = int{ sizeof(ss) };
if (evutil_parse_sockaddr_port(tr_strbuf<char, TrAddrStrlen>{ sockaddr_sv }, reinterpret_cast<sockaddr*>(&ss), &sslen) != 0)
{
return {};
}
return from_sockaddr(reinterpret_cast<struct sockaddr const*>(&ss));
}
std::optional<tr_socket_address> tr_socket_address::from_sockaddr(struct sockaddr const* from)
{
if (from == nullptr)
{
return {};
}
if (from->sa_family == AF_INET)
{
auto const* const sin = reinterpret_cast<struct sockaddr_in const*>(from);
auto addr = tr_address{};
addr.type = TR_AF_INET;
addr.addr.addr4 = sin->sin_addr;
return tr_socket_address{ addr, tr_port::from_network(sin->sin_port) };
}
if (from->sa_family == AF_INET6)
{
auto const* const sin6 = reinterpret_cast<struct sockaddr_in6 const*>(from);
auto addr = tr_address{};
addr.type = TR_AF_INET6;
addr.addr.addr6 = sin6->sin6_addr;
return tr_socket_address{ addr, tr_port::from_network(sin6->sin6_port) };
}
tr_logAddDebug(fmt::format("Unsupported address family {:d}", from->sa_family));
return {};
}
std::pair<sockaddr_storage, socklen_t> tr_socket_address::to_sockaddr(tr_address const& addr, tr_port port) noexcept
{
auto ss = sockaddr_storage{};
if (addr.is_ipv4())
{
auto* const ss4 = reinterpret_cast<sockaddr_in*>(&ss);
ss4->sin_addr = addr.addr.addr4;
ss4->sin_family = AF_INET;
ss4->sin_port = port.network();
return { ss, sizeof(sockaddr_in) };
}
auto* const ss6 = reinterpret_cast<sockaddr_in6*>(&ss);
ss6->sin6_addr = addr.addr.addr6;
ss6->sin6_family = AF_INET6;
ss6->sin6_flowinfo = 0;
ss6->sin6_port = port.network();
return { ss, sizeof(sockaddr_in6) };
}